


Lainzine
Issue 1
Published 20 April 2015

Contents

Editors' Notes 1
For Lainzine #1 1
Noise 2
Gopher Protocol 2
Recommended Reading  6
Art of the Glitch 7
Introduction to Cryptography 12
Word Search 15
Where Do I Start? 16
FreeBSD Guide for Newbs and Dummies 18
Youtube Proxy 20
Structure-based ASCII Art 23

Colophon
Created by the good people of Lainchan from 
all around the world.
https://lainchan.org

Released in good faith and for free to the public 
domain.
€0, $0, £0

Staff
Editors junk & Tilde
Typesetters Ivan & Dylan

https://lainchan.org


In
 Waking
  All
   Known
    Unconscious
     Reality
      Atrophies

Linger
 And
  It
   Nihilates



1

Lainzine, Issue 1 (April 2015)

Editors' Notes

I hope enjoy this magazine. We all have put some 
effort into it and I am personally impressed by 
what we accomplished. Thanks for reading!

finfq bas zp bsosnhe uxrmz – R ddpvwef 
cvqsn kumu pq nxfq.

— junk

We live in a ferocious world, one where it is 
easy to get swept up and aggregated into the 
‘next big thing’. Lainchan is a place somewhat 
removed from the beaten path, where the mag-
netic pull of social assimilation is not quite as 
strong. It is an eclectic gathering of people from 
across the planet, who come together to explore 
the essential ideas of the present, the stuff that 
will become the science fiction and science fact 
of the future.

Most of all, Lainchan is friendly. Stop by 
and say hello, won't you?

— Tilde

For Lainzine #1

Woa, a zine on Lainchan? Is this what you guys 
were doing while I was trudging through sector 
7.b–189 looking for unused datacards last week 
[depression]? This is really something,  glitch 
scattered between the pages… impressive. Just 
in time for the birthday party. Lainchan is the 
name, OC is the game. Look out for my submis-
sion soon.

— Kalyx



2

Lainzine, Issue 1 (April 2015)

Noise

Tapping into the noise – building 
a contact microphone

There is a constant humming in the wires above.
We are told that at either end sits a small 

terminal box that listens carefully and modu-
lates the cosmic pulses to find what is useful.

But in recent years, the wires have stretched 
out. The terminal has receded to some unattain-
able point in the distance. We find ourselves in 
the open: Alone and listening, but unable to 
separate the signal from the noise.

Parts needed
• Piezo disk,
• scraps of wire,
• audio jack socket,
• something to amplify and listen with,
• soldering iron and solder (optional),
• something to secure the mic in place (op-

tional).

Instructions
Sound doesn’t only travel through the air. A 
contact microphone picks up the sounds from 
inside of solid objects. You can shout as loud as 
you want, the contact mic can’t hear you. But if 
you stick it to a wooden board and scrape a nail 
across it you can hear the sound of the wood 
grain resonating, crushing the piezo crystals 
and generating a small electric field.

Doesn’t work? Make sure your contact mic 
is connected to an amplifier of some sort, PC 
speakers will work if they’re turned all the way 
up. Disconnect the wires and try them the other 
way round, then try the first way again.

4

Gopher Protocol

Developed in 1991 by a team at University of 
Minnesota, the gopher protocol is a TCP/IP doc-
ument distribution system that was popular be-
fore the world wide web became the standard 
protocol. It is primarily devoted to serving plain 
text documents organized into a hierarchical di-
rectory structure and lacks formatting, dynamic 
content, and even the mixing of media and text. 
While the protocol may not have style sheets, it 
certainly has style.

The Protocol
The simplicity of the gopher protocol is evident 
from the mere fifteen pages of RFC 1436 – the 
Network Working Group’s 1993 document on 
implementing gopher servers and clients. For 
comparison, FTP’s RFC 765 is 68 pages, and 
HTTP/1.1 is represented by the 176-page 2616. 
A reader with even a cursory understanding of 
TCP/IP can learn the core of gopher over a cup 
of coffee.

Learning the complete internals is better 
suited to the RFC and is left as an exercise to 
the reader, but we’ll go ahead and write a cou-
ple of one-line scripts that handle the majority 
of the available interactions. All that you need 
to know is that the default port is ‘70’.

Script 1: Ask a gopher server to list its 
contents
First, the client opens a connection to the serv-
er, for the example: sdf.org on port 70 Then, the 
client sends ‘CLRF’ to the server to request a di-
rectory listing. ‘CLRF’ refers to “Carriage Return 
Line Feed”, but on most systems will be handled 
by the simple newline character: ‘\n’. To do this, 
use the netcat utility which is a command line 
program for establishing raw network connec-
tions. This very powerful tool can be used for 
exploring remote hosts and even listening as a 
server itself.

http://www.networksorcery.com/enp/rfc/rfc1436.txt


3

Lainzine, Issue 1 (April 2015)

echo "\n" | netcat sdf.org 70

Assuming the host is online, your terminal 
should now contain a list of directories, as pic-
tured in Figure 1. It might not be the most beau-
tiful output, but is certainly readable.

The numbers preceding each items refer to 
the type of item that it is. ‘1’ lets the client know 
that “SDF Member PHLOGOSPHERE” is a subdi-
rectory, while ‘7’ marks “GopherSpace SEARCH 
Engine” as a gopher search server query.1

The string after the item’s name, such as “/
sdf/faq/” is the “magic string” (actual RFC termi-
nology) that directs the client to that particular 
item.

Finally, the output contains a line whose 
sole character is a period. This line indicates 
that the server has listed everything and will 
then close the connection.

1 https://en.wikipedia.org/wiki/Veronica_
(search_engine)

Script 2: Navigate to a particular item on 
the server
Now that we know, via the client, what is availa-
ble at the root tier of the hierarchical structure, 
the client can dig deeper into the gopher hole.

echo "/sdf/faq/\n" | netcat sdf.org 70 

Assuming all went well, you get a response 
similar to the one listed in Figure 2.

With these two simple commands at your 
disposal, you can freely traverse the gopher-
space! All of these are further subdirectories, 
but once you hit an item whose identifier is ‘0’, 
you will have finally arrived at a plain text file.

The Clients
I used this rudimentary network socket ap-
proach to demonstrate how trivial it is to com-
municate with a gopher server, but a variety of 
robust clients exits. As the text pages are pure 
streams of information without style sheets and 
dynamic behaviors, the content of a gopher site 

iWelcome to the SDF Public Access UNIX System .. est. 1987\t\tnull.host\t1

i\t\tnull.host\t1

iWe offer FREE and inexpensive memberships for people interested\t\tnull.host\t1

iin the UNIX system and internetworking.  Personal GOPHERSPACE\t\tnull.host\t1

iis available to all users as well as hundreds of UNIX utilities,\t\tnull.host\t1

igames and networking utilities.  We are a federally recognized\t\tnull.host\t1

inon-profit 501(c)7 organization and we are supported entirely\t\tnull.host\t1

iby donations and membership dues.  telnet://sdf.org\t\tnull.host\t1

i\t\tnull.host\t1

1SDF Member PHLOGOSPHERE (151 directories)\t/phlogs/\tsdf.org\t70

1SDF Member GOPHERSPACE (2334 directories)\t/maps/\tsdf.org\t70

1SDF Frequently Asked Questions (FAQ)\t/sdf/faq/\tsdf.org\t70

1SDF Accredited University Courses\t/sdf/classes/\tsdf.org\t70

1Software and Documentation for various computers\t/computers\tsdf.org\t70

7GopherSpace SEARCH Engine\t/v2/vs\tgopher.floodgap.com\t70

1Floodgap’s GOPHERSPACE\t/\tgopher.floodgap.com\t70

1NetBSD Distribution Mirror\t/NetBSD/\tsdf.org\t70

i______________________________________________________________________\t\tnull.host\t1

i               Gophered by Gophernicus/1.5 on NetBSD/amd64 6.1_STABLE\t\tnull.host\t1

.

Figure 1: Response of the Gopher server

https://en.wikipedia.org/wiki/Veronica_(search_engine)
https://en.wikipedia.org/wiki/Veronica_(search_engine)


4

Lainzine, Issue 1 (April 2015)

is particularly suited to terminal browsing; the 
classic terminal browser lynx has supported go-
pher natively since 1992. Alternatively, plugins 
are available for Firefox and most other main-
stream browsers.2

Before continuing with the rest of the doc-
ument, please take a moment to acquire a client 
and wander about the gopher sites. The most ex-
tensive portal to the gophers that I am aware of 
is over at Floodgap’s server.3 Be sure and check 
out the link to GopherVR. Having had a taste 
of the protocol’s simple pre-http delights, no 
doubt you are eager to set up your own home in 
the gopherspace. You have a couple options: ei-
ther find a place in the city (existing server such 
as sdf.org) or try to make it out on your own in 
the country (run your own server).

2 http://gopher.floodgap.com/overbite/

3 gopher://gopher.floodgap.com/

The Servers
There are advantages to each. By setting up your 
own fresh gopher server, gopher’s web presence 
become further decentralized; it it not ideal to 
have everything crammed into a single point 
of failure. However, home-brew servers have 
a tendency to not last. Fresh holes may find 
themselves quickly buried when running a 24/7 
instance doesn’t go as planned. On the other 
hand, by starting a site on sdf (or elsewhere), 
you help to strengthen the existing, but small, 
gopher community. Your content will be much 
more easily found and more likely to remain on-
line.

Personally, I think the best approach is this: 
if you already run a server of some sort, then go 
ahead and add gopher. But if you just want to get 
content online, simply register on sdf, or wherever 
else you choose. That said, writing a gopher 
server is a great project for learning network 
programming: you learn how to work with cli-

1BASICS  SDF History and UNIX Basics - START HERE\t/sdf/faq/BASICS\tsdf.org\t70

1CHAT    Questions about IRC, ICQ and such.\t/sdf/faq/CHAT\tsdf.org\t70

1DIALUP  SDF’s TENEX National Dialup PPP Membership\t/sdf/faq/DIALUP\tsdf.org\t70

1EMAIL   Questions about INTERNETWORKED EMAIL.\t/sdf/faq/EMAIL\tsdf.org\t70

1GAMES   Single and Multiuser GAMES.\t/sdf/faq/GAMES\tsdf.org\t70

1GOPHER  Gopherspace questions and answers.\t/sdf/faq/GOPHER\tsdf.org\t70

1MDNS    Dynamic DNS with mdns.org \t/sdf/faq/MDNS\tsdf.org\t70

1MEMBERS SDF Membership Information and Responsibilities\t/sdf/faq/MEMBERS\tsdf.org\t70

1MISC    Miscellaneous, Odd and Very Interesting Questions  \t/sdf/faq/MISC\tsdf.org\t70

1MOTD    Coding, Journals, Forums and Galleries for UNIX Hackers\t/sdf/faq/MOTD\tsdf.org\t70

1MYSQL   SDF’s MySQL database server\t/sdf/faq/MYSQL\tsdf.org\t70

1TEACH   Using SDF to teach UNIX and NET concepts.\t/sdf/faq/TEACH\tsdf.org\t70

1TECHIES Advanced UNIX Topics, UUCP and programming.\t/sdf/faq/TECHIES\tsdf.org\t70

1TWENEX  SDF’s Project TENEX Free Software Community\t/sdf/faq/TWENEX\tsdf.org\t70

1UNIX    Questions about UNIX Shells.\t/sdf/faq/UNIX\tsdf.org\t70

1USENET  Newsgroup Questions and News READERS\t/sdf/faq/USENET\tsdf.org\t70

1VHOST   Virtual Hosting and Domain Name Service.\t/sdf/faq/VHOST\tsdf.org\t70

1WEB     Webserver questions and answers.\t/sdf/faq/WEB\tsdf.org\t70

i______________________________________________________________________\t\tnull.host\t1

i               Gophered by Gophernicus/1.5 on NetBSD/amd64 6.1_STABLE\t\tnull.host\t1

.

Figure 2: Response of the Gopher server

http://lynx.browser.org/
http://gopher.floodgap.com/overbite/
gopher://gopher.floodgap.com/


ent-server communications, read and imple-
ment specifications, and can have a complete 
product within a fairly short time. For writing 
the server in C, you may find Beej’s Guide to 
Network Programming a very helpful reference.

4

The Charms
As I’ve repeatedly emphasized, the proto-
col is very simplistic. Perhaps it comes off as 
anachronistic in a web 2.0 world of social me-
dia, e-commerce, and spookily addictive flash 
games.4 Unfortunately, I think its easy to write 
gopher off as something impractical, and only 
of interest to those enthusiastic about min-
imal Linux installs. I would argue though 
that its contraints give it a characteristic wholly 
lacking in the modern web: predictability. I en-
joy shopping online, posting on imageboards, 
and interacting with dynamic graphs, but when 
I simply want to access information, all those 
individual choices regarding styling and format-
ting mean that I can’t rely on any consistent ex-
perience.

Scripting, scraping, and parsing are basic 
operations to perform on data sources, but 
are severely limited by the design choices of 
web designers. Even if a particular website has 
a thought out design that allows elements to 
sanely referenced, it is still a unique entity to 
learn and then trust not to change and break 
whatever you had been doing with it.

With the gopher, you know what are get-
ting: plain text. Its a beautiful format that 
worked before PHP and ASP.NET and Javascript 
and w3schools and works just as nicely today. If 
the strength of the world wide web is it’s free-
dom and support for myriad behaviors, gopher’s 
is in restricting itself to perform its few tasks ef-
ficiently, structurally, and uniformly. 

4

4 http://dagobah.net/flash/Flandre_Game.
swf

5

Lainzine, Volume 1 (April 2015)

http://beej.us/guide/bgnet/
http://beej.us/guide/bgnet/
http://dagobah.net/flash/Flandre_Game.swf
http://dagobah.net/flash/Flandre_Game.swf


6

Lainzine, Issue 1 (April 2015)

Recommended Reading 

‘The Craft of Text Editing’ by Craig Finseth

Are you interested in text editing, fellow Lains? 
I would certainly hope so.

For those wanting to go further in expand-
ing their knowledge, ‘The Craft of Text Editing’ 
is an excellent read.

The book is based on the author’s bache-
lor thesis examining the underlying principles 
of text editors of the time.  After 11 years, it 
was expanded into a book to cover the advanc-
es and other changes that had occurred in the 
meanwhile.

The book pays special attention to Emacs-
-type editors and the choices made in their de-
sign, but a majority of the work applies to all 
text editors and several different ways of doing 
things are always discussed for each topic.

The subjects covered include 
the hardware that programs in-
teract with, the language of the 
editor and the language exposed 
to the user, the conceptual struc-
ture of the edited text, and vari-
ous editor implementations. There 
are chapters on redisplay, the user 
interface, the command set, and 
several other interesting topics. 
Lastly, the book makes for an ex-
hilerating look back on computing 
and the considerations that were 
taken into account historically. The 
bibliography also makes for good 
reading material for those wanting 
to delve deeper into the topic.

As this is the first recommend-
ed reading section for the first 
Lainzine, I’ll point out that this is 
not meant to be an exhaustive cov-
erage or a review, but merely a sug-
gestion.  I guarantee that any Lain 
with a healthy interest in the con-

cepts and technology behind their favorite text 
editor will be thoroughly pleased with this read, 
especially if they use Emacs.

I look forward to recommending more 
books to you all.

4



7

Lainzine, Issue 1 (April 2015)

Art of the Glitch

An Existential Analysis of its Products, 
Processes, and Practitioners

by Dylan

“The glitch is a wonderful experience of an in-
terruption that shifts an object away from its 
ordinary form and discourse. For a moment I 
am shocked, lost and in awe, asking myself what 
this other utterance is, how was it created. Is 
it perhaps… a glitch? But once I named it, the 
momentum – the glitch – is no more…”

— Rosa Menkman (Art of the Glitch, 2009)

Abstract: This paper is an examination of 
the art style known as glitch art and questions 
preconceived notions about glitches and art, 
and asks if they fit that which defines them. It 
looks at glitch art created by established profes-
sionals and how their thoughts and processes 
relate to the established definition of glitch art 
and if the definition should be altered to fit the 
art style. It also compares the effects of popular 
culture on glitch art.

Introduction
The analytics of the art world and art itself has 
always been a grey area. How can one critique 
something non-objective? When considering 
new mediums, who is to say who else is an ex-
pert? The field of digital art is something rela-
tively new and is one that has many interesting 
facets and faces. Delving further into one of 
these sides, the oddly beautiful realm of glitch 
art is one of these parts of the art world that is 
difficult to critique. When the purpose of the art 
form is to destroy something, can one judge its 
beauty? Does it exist as art at all? To understand 
these questions, one must look at the roots of 
the art style. It will be questioned if it can exist 
as a style at all, given the methods and practices 
employed are accurate under the term, “glitch.”

Seeking an Understanding
To understand the root causes, underlying 
structure, or machinations of an issue, theme, 
or skillset, is to understand it at a deeper level, 
to lead oneself to a greater proficiency. This is 
the approach that will be taken moving towards 
a more thorough understanding of the notion 
of glitch and glitch art. It is also a means to ex-
amine the rationale for desiring a system that 
can be seen as a destructive one, the reasons for 
the seeking of chaos, especially when so much 
of the work that is done by humankind is to 
bring order to the disordered. Papers are sorted, 
lists are numbered, and infrastructure is creat-
ed, all to “correct” this entropy (that seems so 
grounded in nature). Given these systems, why 
would this entropy be sought out? What good 
can come from disorder? This art style that is 
almost against the nature of human beings will 
be broken down and examined at its roots and 
its mysteries revealed.



8

Lainzine, Issue 1 (April 2015)

strange, yet visually appealing image. The image 
is shared and enjoyed by many; the origin of the 
glitch art.

What then, of these imitators, these fol-
lowers, of this new found style? The perceived 
beauty of these images that are so wonderfully 
distorted have a movement behind them. There 
are those that wish to see more of this. However, 
the methods that were employed to get these 
results are actually non-existent. The followers 
of glitch art’s only way to create more of this art 
is to go about their daily lives and keep an eye 
out for an opportune moment when something 
might break in their favor. Perhaps they use the 
same software that the originator used. Perhaps 
they try to replicate the actions of the previous 
user. They do, but the time it takes for anything 
to happen is too lengthy for their tastes, so they 
abuse the software. They feed the program in-
put that any normal user would not dare.

Here, however, we can already see a prob-
lem. Returning to our definition of glitch, an 
undesirable result or outcome, we can see that 
these new users that are abusing this software 
for their own gains are no longer adhering to 
this definition. The results that are produced 
from their knowledge of this program and the 
intent to output errors means that what they 
are producing is no longer glitch art (in the 
strictest sense). Before we look to questioning 
what this new art style really is, let us look to a 
notable “glitch” artist, Rosa Menkman and her 
take on the style.

An Existential Crisis
Rosa Menkman does in fact, associate the defi-
nition in a similar way that has been laid out 
previously, as she states here: “The glitch has no 
solid form or state through time; it is often per-
ceived as an unexpected and abnormal mode 
of operandi, a break from (one of) the many 
flows (of expectations) within a technological 
system.” (Menkman, 2009) Though she scopes 
it to a tighter view of a technological system, 

A glitch could be defined as an undesirable 
result or outcome; a deviation from an expected 
conclusion. Is it possible that one might simply 
tack the idea of “art” on to the end of that defi-
nition? An undesirable artistic outcome? This, 
rather simple, definition leaves a multitude of 
things susceptible to its grasp. A walk down the 
street could have a “glitch” when one trips and 
falls. Certainly, one does not desire to trip and 
fall when walking anywhere. Perhaps a crack in 
a glass or a misprint in a paper could be con-
sidered a glitch. These things, yet, are different 
from the glitches that are considered art. A mis-
printed paper is certainly not art, nor is a bro-
ken glass. We might, then, ask ourselves, what 
is art?

Looking at the vast expanse that is the artis-
tic timeline, we can see an enormous amount of 
different styles and methods for producing art, 
and it can be understood that to try and define 

“art” would be quite a challenging feat. They do, 
however, have one thing in common: they are 
all pleasing to look at (or interact with or what-
ever the intended form of experience may be. 
Regardless, the idea is that it is enjoyed). Mon-
et’s impressionist paintings are indeed beauti-
ful (beauty is subjective, however, and what one 
might find beautiful, another might find repul-
sive. This will be an inherent property of art, at 
least established for the sake of this writing). 
Returning then, to the broken glass with this 
new found knowledge, these bright, open, eyes, 
we find that this broken glass is not beautiful. It 
lies on the countertop, in pieces, and does not 
move us to gaze upon it longingly, only to wish 
that it was not needed to now be cleaned up.

This “glitch art” then, the child of two defi-
nitions that were so unceremoniously glued to-
gether (perhaps it is fitting, given the word that 
is being defined), can be understood, at least, 
for now. One could be typing a paper when for 
no reason at all, the computer screen glitches. It 
is in this moment that an artist is born. This dar-
ing soul captures the screen to produce a very 



9

Lainzine, Issue 1 (April 2015)

Glitch Art in Popular Culture
Rosa Menkman talks about the attempt to de-
fine glitch art by media and art historians, giving 
rise to labels such as “post-digital” and “data-
moshing.” She provides, what she believes, to 
be a solution to this problem, but for now, a 
gaze will be cast upon that subsection of glitch 
art called “datamoshing”. Author Shad Gross 
describes datamoshing as “a technique whereby 
the compression of digital video is manipulat-
ed as a means of creative expression.” Gross, S 
(2013) His article talks about how digital art (and 
most all digital media) lacks any form of physical 
forms but rather, holds within it, a vast number 

of potential forms. Gross looks to glitch art and 
datamoshing as a way to reveal these inherent 
forms of digital media, to focus on the digital 
aspect of the digital, rather than as a vehicle to 
a different form entirely. The process of data-
moshing involves the editing of frames within 
the video, more specifically, the frames that re-
lay information about which parts of the screen 
(pixels) to draw or redraw after something has 
changed. For many original authors of glitch 
art and datamoshing, the popular adoption of 
this style or the adaptation of the style into the 
mainstream culture, was to lose some of the 
original luster that it once possessed. Glitching 
and datamoshing were ways in which people 

it fits the idea, regardless. She also notes that, 
the concept of these errors is altered when they 
are realized and made into an idea along with 
the glitch. The “original experience of a rupture” 
transcended its own self and moved into a new 
mode of existence entirely. The glitch has ceased 
to be, and has “become an ephemeral, personal, 
experience.” (Menkman, 2009) She speaks to 
the very idea that has been presented: that the 
definition and idea of a glitch are no longer that 
when they are realized. The mere observation 
or thought of them has changed them forever. 
An interesting point is made, however, when 
she touches upon the act of commercialization 
of glitch art, whether it be in the 
form of a script or a “glitching soft-
ware.” She claims that they move 
away from the process of, what she 
calls, “creation by destruction” and 
focus on only the final product. In 
short, it is about the journey, not 
the destination, that gives “glitch 
art” its meaning. “When the glitch 
becomes domesticated, controlled 
by a tool, or technology (a human 
craft) it has lost its enchantment 
and has become predictable. It is no 
longer a break from a flow within a 
technology, or a method to open 
up the political discourse, but instead a cultiva-
tion. For many actors it is no longer a glitch, but 
a filter that consists of a preset and/or a default: 
what was once understood as a glitch has now 
become a new commodity.” (Menkman, 2009) 
This cultivation that she speaks of is inherent 
in just about any form of media, from music (a 
local band rising to international fame) to art 
(the rise of the popularity of the impressionist 
art style) to social trends (the explosion of the 
undead and supernatural creatures “genre”). If 
there are these communities that exist, produc-
ing glitch art as an end, rather than a means, 
they will be subject to scrutiny next.



10

Lainzine, Issue 1 (April 2015)

down the established cultural norms and look 
at the craft from a new perspective. This style 
of thinking has been observed by and invited 
upon by the InterAccess Electronic Media Arts 
Centre in Toronto. Artists created video games 
based around the idea of what it means to be 
and produced some very interesting results. As 
an example, Terrence (2006) reported this: “…
[Ashmore’s] Mario Trilogy places the epony-
mous plumber underwater, in prison or wan-
dering through an empty landscape, with only 
the viewer/player to move him around aimlessly 
until the game clock runs out and he dies.” This 
kind of work of art certainly leaves the player 
with a new outlook on life when the game is fin-
ished due to its very relatable message of death 
and the purpose of existence, or well described 
by Krapp (2013), the contrast between “playing 
a game and playing with a game.” This mode of 
thinking can be applied to glitch art, question-

ing, and perhaps challenging, the 
very existence of art. With its de-
structive nature, twisted ideas and 
indefinable genre-state, it is almost 
as if glitch art is the death of other 
art forms.

Redefining Glitch Art
Given these new insights, one can 
see the beginnings of glitch art, 
its methods and practices, and its 
shortcomings. It is justifiable then, 
to say that the term “glitch art” is 
incorrect when it is being described. 
If glitch art is less about the glitch, 
and more about the experience, 
more about the path taken and the 
surroundings enjoyed on that jour-
ney than the end result, then it is 
to be understood that a new defini-
tion is in order. The true glitch art 
will live on as the far most removal 
of oneself from the desire to cre-
ate it, though one could question if 

could transform and alter popular culture, but 
now it has transformed into the ends, rather 
than the means, that was mentioned earlier. 

Reducing glitch art to this minimal effort 
approach also loses a key aspect of the idea that 
it takes a skill and knowledge of the hardware or 
software to intentionally produce these glitches. 
Experimentation is a key element, as noted by 
Funda (2013): “[i]n forcing a visual glitch, there 
is an element of unpredictability that makes 
experimentation worthwhile and rewarding.” 
However, the production of scripts and tools to 
make this kind of art more accessible is what re-
moves the appeal. 

Some artists view glitch art as a means of 
questioning the nature and existence of art it-
self. Only after hundreds of years of creation 
of artwork do some people begin to ask, “why?” 
rather than “how?” One might view this as 
a driving purpose behind glitch art, to break 



11

Lainzine, Issue 1 (April 2015)

that is even possible.
Regardless, consider the term modal, which 

is relating to something’s mode or manner. It 
will be used as related to a “mode of action” or 
simply put, its procedure. Looking back again, 
we remember the description of the artist who 
followed in the footsteps of the “original glitch 
artist.” He pushed the limits of the software 
he was using to create these glitches. It will be 
termed that this kind of action taken with elec-
tronic devices, to produce a desired non-stand-
ard result, as abuse. Just as the terms “glitch” 
and “art” were joined together to create a new 
meaning, this style of glitch art that desires the 
malfunctions and errors and actively attempts 
to produce them, will be termed, “modal abuse.” 
To put it in a more official format, let us say it 
this way, Modal abuse – the intentional modi-
fication or mistreatment of a hardware or soft-
ware piece to produce an atypical result for the 
sake of artistic expression.

The newly defined glitch art is, perhaps, a 
more fitting representation of the values, meth-
ods, and ideas that it aims to be. While, however, 
the views that others (mostly artists) may have 
on this style may transcend all definitions into 
a more ideological and emotional realization, to 
other people, a definition can help create an un-
derstanding that is the difference between con-
fusion and clarity. Now, then, begins a new task: 
to truly remove all elements that could reflect 
the possibility that any amount of disorder was 
desired.

References
Funda S. T. (2012). Glint: Audiovisual glitch-
es. Leonardo, 45(3), 296-297. doi:10.1162/LE-
ON_a_00383

Gross, S. (2013). Glitch, please: Datamoshing as 
a medium-specific application of digital material. 
175-184. doi:10.1145/2513506.2513525

Krapp, P., & Ebooks Corporation. (2011). Noise 
channels: Glitch and error in digital culture. Min-
neapolis: University of Minnesota Press.

Menkmen, R. (2009) Glitch studies manifesto Re-
trieved from http://rosa-menkman.blogspot.nl/

Terence D. (2006). Controller: Artists crack the 
game code. Winnipeg: Arts Manitoba Publica-
tions Inc.

4

http://rosa-menkman.blogspot.nl/


12

Lainzine, Issue 1 (April 2015)

Introduction to Cryptography

by peeping_Tom

Cryptography is the practice of secret writing 
where information is hidden from adversaries. 
First used by the military, it is now used in every 
facet of our lives, from simple web browsing to 
paying bills, talking to your friends, and much 
more. With examples, I will show you the basics 
of cryptography and how all encryption is crack-
able. Cryptography is a wide topic that takes 
much mathematical ingenuity, so I sliced it into 
two parts. In this first part, we will explore the 
origins of cryptography and some simple ciphers 
you might use with your buddies online or off. 
This article is mostly theoretical but I encourage 
you to put your newly acquired knowledge to 
practice by coding working examples.

Encryption is based on the idea that crack-
ing takes time, and that the more time it takes 
to crack, the better. Think of bike locks. We 
know they do not offer perfect security, but 
we rely on the idea that it will take bad people 
more time to break them than it will take for 
someone on the street to stop them. Cryptog-
raphy follows a similar mindset.

The simplest cipher (method of encryption 
or decryption) is the substitution cipher. As its 
name implies, this cipher substitutes letters. 
The most famous substitution cipher is the Cae-
sar cipher in which all the letters are replaced 
by their neighbors in the alphabet a few places 
over to the right or left.  Imagine if A became B, 
B became C, C became D, and so on until we got 
to Z, which became A. This is a basic example of 
the Caesar cipher.

Another interesting substitution cipher is 
the Pigpen cipher. Used primarily by Freema-
sons, this cipher substitutes letters for shapes 
and dots.

Every substitution cipher works on the 
same simple idea, substitution of letters for 
some other symbols. The way anyone would go 

about cracking this cipher is through a “check-
ing” process: look for common words in the 
message's language, then substitute in reverse. 
For instance, you would look for repeated sets 
of 3 letters, expect them to be “the“, then carry 
out the necessary substition on the rest of the 
ciphertext, i.e., the encrypted text.

Extend this process to letters, rather than 
for words, and you get something called “fre-
quency analysis”. This method cracks any sub-
stitution cipher if you know the language of the 
plaintext (original message). To crack any sub-
stitution cipher you start with the “fingerprint” 
of the plaintext's language, and then look at a 
frequency analysis of symbols in the ciphertext 
to see the rules for substitution. 

The fingerprint is simply a frequency of 
occurrence of some letters in a language. For 

Figure 1: The Caesar cipher

Figure 2: The Pigpen cipher



13

Lainzine, Issue 1 (April 2015)

the second/seventh/twelfth/seventeen/… letter, 
and so on. The most famous of polyalphabetic 
ciphers is the Vigenère cipher, which I have just 
explained.

Take the initial left column to be the code-
word, and first row to be the plaintext or ci-
phertext you want to encrypt/decrypt. Repeat 
the codeword over the letters of the plaintext/
ciphertext without any spaces. For example, try 
to decrypt “WEBFCSLYZVMYCPN” with code-
word “lainchan”. How would a cryptanalyst try 
to crack this? Since it's just many Caesar ciphers, 
frequency analysis of the ciphertext is safe bet, 
right? Well, after he does that he is presented 
with flat or equally distributed letter frequen-
cy. That's because there were several different 
shifts performed on one text. If he doesn't know 
the codeword, he can't really crack it. Unless he 
knows the length of codeword.

Since we know that the length of the code-
word is N letters, and that every 1+K×N letter 
shares the same shift cipher (where K is a num-
ber from 0 to ∞ – or at least until K×N becomes 
longer than ciphertext), we can do frequency 
analysis on every K×N-th letter. Since we used 

example, if you were to take this wall of text 
and count the occurrences of every letter, you 
would find that the most common letters are 
(by total count): ‘e’, ‘t’, ‘a’, ‘o’, ‘i’, ‘n’, ‘s’, … (just 
remember ‘ETAOIN SHRDLU’ and that way you 
remembered the 12 most common English let-
ters). The following image shows the fingerprint 
of the English language.

This property is unique to the English lan-
guage, however all languages have a “common 
letter use” property. To evade this, people built 
the polyalphabetic cipher. 

The polyalphabetic cipher works on the 
same idea as Caesar cipher, making multiple 
shift ciphers of the same plaintext. First, a code-
word is established between the parties. The 
codeword denotes the shift ciphers, for exam-
ple the codeword “snake” means that there are 
5 shift ciphers each with their own designated 
shift. The first cipher substitutes the first ‘A’ to 
occur with ‘S’, ‘B’ with ‘T’, … the second ‘A’ with 
‘N’, ‘B’ with ‘O’, and so on. Now that we have 
5 shift ciphers with different letter shifts, how 
do we apply them to the plaintext? We repeat 
the ciphers in order. The first cipher on the 
first/sixth/eleventh/… letter, second cipher on 

Figure 3: The distribution of letters of the 
alphabet in English by frequency of occurrence

Figure 4: A polyalphabetic cipher



14

Lainzine, Issue 1 (April 2015)

shift ciphers can shift letters by at most 26 until 
they repeat (as there are only 26 letters in the 
alphabet that you can shift to), bruteforcing a 
Caesar cipher would be simple since the shift 
is always the same. So you try out all possible 
shifts (from 1 to 26). For the polyalphabetic ci-
pher and the one-time pad, bruteforcing be-
comes impossible since there is a shift for every 
letter. You would need to try all possible letter 
shifts for all possible letters, meaning that you 
would need try out all 26 shifts for only one 
letter. The longer the ciphertext is, the great-
er amount of shifts you need to try out. Given 
that's 26 shifts for a letter, and N is the amount 
of letters in the ciphertext, you would need 26N 
tries to crack the text. Best explained by a sim-
ple example.

Let's say that we encrypted word “lain-
chan” with one-time pad with codeword of 

“ZDXWEJKA”, making it “KDFJGQKN”. There 
are 26 possible shifts for all letters, mak-
ing it 26×26×26×26×26×26×26×26 = 268 = 
208,827,064,576 possible combinations of 
shifts. As the plaintext becomes longer, N be-
comes larger and so does the amount of possi-
ble outcomes 26N. If the codeword is truly ran-
dom, one-time pads are on par with asymmetric 
encryptions. If you have a friend with whom you 
can practice encryption, try remembering pi to 
300 decimals (it's not that hard, just listen to 
Hard n' Phirm's Pi song a bit and you already 
have 160 digits), and then encrypting everything 
with it (first letter shift by 3, second by 1, third 
by 4…).

“lainchan” as our codeword, we can do frequen-
cy analysis on every 8th letter in “WEBFCSLYZV-
MYCPN” and find out all 8 shift ciphers that way, 
or in English, we can find the codeword. If we 
don't know the length of the codeword, and we 
saw flat distribution of frequency analysis, then 
we would try frequency analysis of every (1+K×N)
th letter, where K ranges from 0 to ∞. Since we 
don't know N (length of the codeword), we will 
assume it's 1 letter long, then we will assume its 
2 letters long, and so on. We do this until we 
get the original, readable plaintext. This process 
can be automated with computers, which easily 
make it take less time. Longer codewords result 
in stronger ciphers since the cracker has to as-
sume all possible codewords shorter than the 
real codeword.

This is only possible because the codeword 
is repeating, but what if it wasn't repeating? 
What if we had a codeword as long as the plain-
text itself? This is called a one-time pad. The 
codeword “lainzine” can be seen as a list of num-
bers by which the shift is occurring in each shift 
cipher (‘L’ = ‘11’, ‘A’ = ‘0’, ‘I’ = ‘8’, and so on). Also 
note that having a random number sequence 
for codeword is much more secure than having 
a word.

A multiple-shift cipher with random shifts 
on each letter that is as long as the ciphertext is 
unbreakable by frequency analysis because the 
shifts don't repeat. The only way to break this 
one-time pad is brute force.

Bruteforce, in layman's terms, is trying out 
every possible combination. Since we know that 

Figure 5: An example of a one-time pad

ZDXWWW EJKAWO FECIFE WSNZIP PXPKIY URMZHI JZTLBC YLGDYJ 
HTSVTV RRYYEG EXNCGA GGQVRF FHZCIB EWLGGR BZXQDQ DGGIAK 
YHJYEQ TDLCQT HZBSIZ IRZDYS RBYJFZ AIRCWI UCVXTW YKPQMK 
CKHVEX VXYVCS WOGAAZ OUVVON GCNEVR LMBLYB SBDCDC PCGVJX 
QXAUIP PXZQIJ JIUWYH COVWMJ UZOJHL DWHPER UBSRUJ HGAAPR 
CRWVHI FRNTQW AJVWRT ACAKRD OZKIIB VIQGBK IJCWHF GTTSSE 
EXFIPJ KICASQ IOUQTP ZSGXGH YTYCTI BAZSTN JKMFXI RERYWE



15

Lainzine, Issue 1 (April 2015)

Although the codeword needs to be truly 
random, this would work fine as long as you and 
your friend don't reveal the codeword to any-
one else.

That's about all we need to know about 
the origins of cryptography and simple ciphers. 
In the next article, we will talk about XOR and 
asymmetric encryption. I hope you liked this 
short introduction, and that you will have loads 
of fun with your friends armed with this knowl-
edge.

4

Word Search

 Y T P S Y C H E T J C D U K D E A T H  
 Z A Y R O R M A E R D D U A B N M S H  
 S N U V V O L I V I A S A A Q J I O D  
 V A P Y Y Y H S B N G F I O F S Z R I  
 D B D R T H V V A N B H N S A U U A I  
 J I C I I C D X K V S I E N F O K T R  
 N H T R L S T U I O A L I B I I I S I  
 V C J O A C J W T L Z H Z E O C A T E  
 U A I F E P Z I A E C V R S K S R H I  
 O T Q J R B H R C A C E U M V N I G M  
 Z H O X C S U N M S Y R M R H O S I A  
 S R B B O K E X B A B R J I P C U N S  
 P H G Y A I E N L D E I L O C B P K A  
 H S L W T S O X R S R K H C H U Z J M  
 Y O I N U F Y I N O I T R O T S I D N  
 S R E E T G E F J Z A E E J I V A N B  
 N S D X Y W K K K C A L B N I N E M M  
 H U S K J M M A M V V Y R O M E M E Z  
 E V E F M K K W I R E D L M T M O E G



Where Do I Start?

A primer to offensive security

by Hash_Value

Every computer forum you find is flooded with 
questions about hacking. When lainchan makes 
it big, we are going to get these questions a lot 
on /cyb/, so point them to this guide when they 
ask!

Hacking has a lot of definitions depending 
on who you ask, but let's go straight to offen-
sive security (which I know is what you all want 
anyway). First, you will need a basic but strong 
foundation in programming, networking and 
operating systems.

To get a strong foundation in programming/
scripting/coding you need to practice! I don't 
mean following along with easy college intro to 
programming course either. You need to build 
something useful. It doesn't have to be complex, 
just useful. Just run a web search every time you 
have a problem. Start off with some simple syn-
tax and then go use that to solve problems and 
get better and go bigger. A lot of the time, you 
just need to know simple scripting languages 
such as python and ruby. If you plan on building 
something big, use C or C++. Personally, I always 
recommend this project based approach. That 

way you get to see how the pieces fit together 
and you actually end up with something at the 
end.

Next is networking. You will need to know 
how packets move, and how routers and switch-
es move them! There are hundreds of tutorials 
on this, as with programming. Visit Cisco's web-
site and download a little program called packet 
tracer. This tool simulates creating a network, 
although it doesn't have all the security meas-
ures and you don't get the physical hands on 
experience. It's one of the best tools available, 
though, and I highly recommend playing with it! 
If nothing else, you can buy an old Cisco router 
on the web for cheap and it will still be good, 
trust me. Businesses are usually slow to change 
their routers and switches. In addition to all of 
this, you also need a strong understanding of 
ports and TCP handshake.

Moving on to operating systems, the big 
three are Windows, OS X, and Linux. Back in 
the early days, if you wanted to do any hacking 
it had to be on linux. That isn’t necessarily true 
nowadays, as many tools have been ported to 
Windows and Mac. However, Linux is still your 
best bet. Regardless of which operating system 
you choose to work with, you have to learn both 
Windows and Linux. Why? Each holds about half 
of the server market, and if you plan on break-
ing in to either you have to learn both, including 
Linux and Windows server versions.

Let's not forget web applications! Since the 
arrival of web 2.0, HTML5 web applications have 
become more and more popular. You will need 
to know HTML (HyperText Markup Language) 
and Javascript (a client-side scripting language). 
You also have to know how websites work, and 
how databases interact with websites. You can 
start by installing LAMP (Linux-Apache-MySQL-
PHP5) in a virtual machine (which we will dis-
cuss later).

Okay, now that you have a rough idea of 
what you should be learning, time for the good 
stuff!

16

Lainzine, Volume 1 (April 2015)



17

Lainzine, Issue 1 (April 2015)

Q: Kali Linux?
A: Only liveboot, don’t install it.

Q: Do I have to learn to code?
A: Tools can only go so far Anon.

Q: How do i hack Facebook?
A: Look into ‘SET’.

Q: What are the tools i need to hack X?
A:

• Portscanning: nmap
• Password cracking: hydra
• Web app: Burbsuite is popular, but I like 

w3af
• General use: Metasploit is an all-in-one tool 

which is pretty much perfect for everything
• Social engineering: payphone/SET

Q: Where can I get hands-on experience?
A: Places to practice hacking:

• https://www.hackthissite.org
• https://www.hackthis.co.uk
• https://pentesterlab.com
• https://hack.me
• https://community.rapid7.com/docs/DOC-

1875
Networking help and tutorials:

• https://www.netacad.com/web/about-us/ 
cisco-packet-tracer

• https://www.youtube.com/user/danscours-
es

Very good resources and general use education:
• http://pastebin.com/cRYvK4jb
• https://udacity.com
• https://www.youtube.com/user/thenew-

boston

Exploit development:
• http://www.myne-us.com/2010/08/from-

0x90-to-0x4c454554-journey-into.html

4

First the age old question: “Should I down-
load a hacking specific distro?” The truth of the 
matter is, you don't really need too. You can 
download all the tools into any distro of Linux 
from the web, so the only real reason you would 
want to download a pentesting distro is the fact 
all the tools are the there and you don't have 
to waste time finding all the dependencies for 
metasploit. So my advice for you is this: Down-
load a pentester, but don't install it as your main 
distro. Yes there are some distros that can serve 
both purposes, but I wouldn't recommend us-
ing them that way.

Alright, you got your weapons and the 
skill to wield them, now all you need is a dojo. 

"But why can't I attack Shitbook or [insert other 
mainstream site here]?” I'm glad you asked! It's 
because that would be illegal, and you would 
get caught. I recommend visualizing everything, 
because it's cheaper, if you fauurrk something 
up you can revert back to a snapshot, and it's 
cheaper. Now, many recommend VMware. It 
costs a lot of money, and I won't lie, VMware is 
really well made. However, Virtual Box does the 
same thing at a price you can't beat, free (as in 
both free beer and freedom).

Well, this was just a starter’s guide, rough 
and dirty. I do full time college and work, so op-
portunities to shitpost on the web are few and 
far between. I wanted to do a starter’s guide on 
BeEF (browser exploitation framework) as well, 
but it was going to take longer than I first sus-
pected. I’ll try for that next time, but no prom-
ises. If you want to talk to me, feel free to give 
me something to research; I love to learn new 
things. Chances are I’m lurking in #lainchan on 
freenode.

FAQ
Q: I’m just a poor boy who has to steal wifi.
A: Get Reaver or, if you're using Windows, Cain.

https://www.hackthissite.org/
https://www.hackthis.co.uk/
https://pentesterlab.com/
https://hack.me
https://community.rapid7.com/docs/DOC-1875
https://community.rapid7.com/docs/DOC-1875
https://www.netacad.com/web/about-us/cisco-packet-tracer
https://www.netacad.com/web/about-us/cisco-packet-tracer
https://www.youtube.com/user/danscourses
https://www.youtube.com/user/danscourses
http://pastebin.com/cRYvK4jb
https://udacity.com
https://www.youtube.com/user/thenewboston
https://www.youtube.com/user/thenewboston
http://www.myne-us.com/2010/08/from-0x90-to-0x4c454554-journey-into.html
http://www.myne-us.com/2010/08/from-0x90-to-0x4c454554-journey-into.html


18

Lainzine, Issue 1 (April 2015)

should auto connect to your home wireless, but 
if you go somewhere else it won't do this (obvi-
ously). So follow these simple steps:
1. “ifconfig” – this will print out your card 

name and its alias. Most of the time it is 
just “wlan0”.

2. “ifconfig wlan0 scan” – brings up network 
ids

3. “ifconfig wlan0 nwid 'FooBar Network' 
wpakey “FO0Bar_password”

4. If your network is unencrypted use the 
“-wep” or “-wpa” option where the wpakey” 
would normally be

5. “dhclient wlan0” – this will setup all the 
DHCP shit

6. to test run “ping google.com”

Part 2: Users
You will come to a point where you will be asked 
if you want to create a user. Select yes and go 
thru the basics until you get to the part where 
it asks you if you want to add this person to any 
groups. In this you want to type “wheel” this 
will be used later when adding you to the list of 
sudoers

Part 3: Post install
After you are done you will reboot your comput-
er and take out the medium which you used to 
install FreeBSD with. The computer should boot 
normally and you will be confronted with a basic 
CLI login screen (we will be adding a graphical 
login manager later). Login as root (only for this 
section, doing this routinely is a rootkit waiting 
to happen).

Once you are logged in as the root user you 
will do the following:
1. We are assuming you are connected to your 

home network; run “ping google.com” to 
test this.

2. Now we are going to install a few basic 
packages. You will be doing all this as root 
for now but later you can finally use the 
user you created. Run the “pkg” command 

FreeBSD Guide for Newbs 

and Dummies

by gh0st_

Getting the release
First go to freebsd.org and pick the proper ar-
chitecture. You will see the option of x86 and 
x64. To find out which one to pick you generally 
need to go by how much RAM you have. If you 
have under 4gigs of RAM the go with x86, 4gigs 
or more then go with x64.

Knowledge requirements
• Unix basics – ie. directory setups and con-

cepts.
• Shell, i.e. Bash, CSH, KSH, etc. – You need 

to have a basic grasp on this.
• Unix concepts – i.e., everything is a file, shit 

like this.

Install
If you have never messed around with Unix like 
OS’s before then you probably should go to Li-
nux first, pick something like Ubuntu and learn 
the Unix basics (also, the installer on Ubuntu is 
generally more friendly). 

Note: If you don't want to, then go and 
grab the FreeBSD handbook and read through it.

First boot
Press Enter and go through the basic installer 
(it is pretty fucking easy). If you can't navigate 
through that then you shouldn’t be reading this.

Part 1: Wireless
If you are on a desktop, you don't have to wor-
ry about this. However, if you are on a laptop 
you, will be confronted with a wireless connec-
tion screen inside the installer. Just find your 
wireless network id and click it, then enter your 
password and continue. After the install, you 

freebsd.org
https://www.freebsd.org/doc/handbook/


19

Lainzine, Issue 1 (April 2015)

normally. Next run “cd ~” to get to your home 
directory and run “nano .xinitrc”. Add the fol-
lowing to the file:

exec /usr/local/bin/startxfce4

This will make it so when you boot up and 
login with SLIM or the CLI login screen you will 
be able to boot into xfce. (Note that if you aren't 
using a graphical login manager you will need to 
run “startx” to boot into the desktop.)

That's all for now folks. Stay tuned for my 
next article in the next issue of lainzine. I will be 
covering ricing your xfce desktop.

Note: This will have some spelling errors 
and maybe even some gaps in the guide. Don't 
bitch about it, figure it out. If you can't, there 
are tons of forums, discussion boards, mailing 
lists and IRC channels dedicated to Unix full of 
helpful, enthusiastic people.

4

and go through the dialouge. Next, run 
“pkg install sudo”. 

3. Run “visudo” and once you see text press 
the ‘i’ key to start editing text. Scroll down 
until you see “Uncomment to allow mem-
bers of the wheel to” blah blah blah, press 
the Del key to uncomment. Next press the 
Esc key then press Shift “:wq”. Having done 
that will allow the user you created to have 
access to sudoers.

We will now be setting up our desktop en-
vironment and login manager as well as a shit 
ton of other stuff to get you started. First run 

“pkg install nano”. Once that installs you want 
to install basic GUI packages such as a desktop 
environment

I will later write a file on how to customize 
xfce, but for now we are just setting up.

Part 4: Packages and settings up the 
desktop environment and login manager
Run “pkg install xorg xfce4-session firefox 
hexchat epdfview”. Once that finally installs 
run pkg install “xfce4-wm-themes slim 

xfce4-mixer” (or “xfce4-pulseaudio-daemon”). 
Once you install this, you can poke around and 
configure xfce to your liking but that is for a 
different zine.
4. Log out of root and login as the user you 

created. You should have basic permissions 
now that you are a sudoer. Next you want 
to configure things so that xfce will work, 
run “sudo nano /etc/rc.conf” and add the 
following to the file:

dbus_enable="YES"

hald_enable="YES"

slim_enable="YES"

moused_enable="YES"

powerd_enable="YES" (if you are on a 

laptop only)

Next, press Ctrl-O and press Enter.
Now your xfce should be able to function 



Youtube Proxy1

The following script runs on vanilla Node.js and requires an executable of youtube-dl. If it's not 
located in the same directory as the script, change the line

var job = spawn('./youtube-dl', args);

to something like

var job = spawn('~/path/to/youtube-dl', args);

USage exampleS
Download a video in MP4 from YouTube:

http://example.com:8567/https://www.youtube.com/watch?v=XXXXXXX 

Download a video from YouTube and extract audio in M4A format:

http://example.com:8567/https://www.youtube.com/watch?v=XXXXXXX.m4a 

Currently, the headers it sets are designed for downloading. You can change them so that it 
plays in your browser, but I mainly wanted it for downloading videos on my phone and Firefox on 
Android wouldn't download it without them.

Also, be aware that it needs a “downloads” directory that is not created automatically.

var spawn = require('child_process').spawn,

    fs    = require('fs'),

    http  = require('http'),

    mime  = require('mime');

var server = http.createServer(function(req, res) {

    var m      = req.url.match(/\/(.*)\.(.*?)/),

        format = m[2],

        url    = m[1];

    if (!/^.*\.[a-z0-9]{3,5}$/.test(req.url)) {

        format = 'mp4';

        url    = req.url.match(/\/(.*)/)[1];

    }

    var file     = url.replace(/[\/:?!&=\.]/g, '') + '.' + format,

        mimeType = mime.lookup(file),

        args     = ['-o', 'downloads/' + file];

1 Original comment on /tech/: https://lainchan.org/tech/res/5644.html#5658, original source 
code at http://pastebin.com/raw.php?i=amxBtmmj

20

Lainzine, Volume 1 (April 2015)

https://lainchan.org/tech/res/5644.html#5658
http://pastebin.com/raw.php?i=amxBtmmj


21

Lainzine, Issue 1 (April 2015)

    if (['m4a', 'mp3', 'opus'].indexOf(format) !== -1) {

        args = args.concat(['-x', '--audio-format']);

    } else {

        args.push('-f');

    }

    args.push(format);

    args.push(url);

    console.log(args.join(' '));

    var job = spawn('./youtube-dl', args);

    job.on('close', function(code, signal) {

        var fileStream = fs.createReadStream('downloads/' + file);

        pipeReadstream(req, res, fileStream, mimeType, file, function(err) {

            console.log('error: ' + err);

        });

    });

    job.stdout.on('data', function(data) {

        console.log('stdout: ' + data);

    });

    job.stderr.on('data', function(data) {

        console.log('stderr: ' + data);

    });

});

server.listen(8567);

// Pipe some stream as HTTP response

function pipeReadstream(req, res, readStream, mimeType, filename, cb) {

    var headWritten = false;

    readStream.on('data', function(data) {

        if (!headWritten) {

            res.writeHead(200, {

                'Content-Disposition': 'attachment; filename=' + filename,

                'Content-Type': mimeType

            });

            headWritten = true;

        }



22

Lainzine, Issue 1 (April 2015)

        var flushed = res.write(data);

        // Pause the read stream when the write stream gets saturated

        if (!flushed) {

            readStream.pause();

        }

    });

    res.on('drain', function() {

        // Resume the read stream when the write stream gets hungry

        readStream.resume();

    });

    readStream.on('end',   function()    { res.end(); });

    readStream.on('error', function(err) { cb(err); });

}

4

Structure-based ASCII Art

Xuemiao Xu∗ Linling Zhang† Tien-Tsin Wong‡

The Chinese University of Hong Kong

Figure 1: Structure-based ASCII art generated by our method (the input is “banquet” of Figure 18). Characters were chosen from the set of
95 printable ASCII characters.

Abstract

The wide availability and popularity of text-based communication
channels encourage the usage of ASCII art in representing im-
ages. Existing tone-based ASCII art generation methods lead to
halftone-like results and require high text resolution for display, as
higher text resolution offers more tone variety. This paper presents
a novel method to generate structure-based ASCII art that is cur-
rently mostly created by hand. It approximates the major line struc-
ture of the reference image content with the shape of characters.
Representing the unlimited image content with the extremely lim-
ited shapes and restrictive placement of characters makes this prob-
lem challenging. Most existing shape similarity metrics either fail
to address the misalignment in real-world scenarios, or are unable
to account for the differences in position, orientation and scaling.
Our key contribution is a novel alignment-insensitive shape sim-
ilarity (AISS) metric that tolerates misalignment of shapes while
accounting for the differences in position, orientation and scaling.
Together with the constrained deformation approach, we formulate
the ASCII art generation as an optimization that minimizes shape
dissimilarity and deformation. Convincing results and user study
are shown to demonstrate its effectiveness.

Keywords: ASCII art, shape similarity

∗e-mail: xmxu@cse.cuhk.edu.hk
†e-mail: llzhang@cse.cuhk.edu.hk
‡e-mail: ttwong@cse.cuhk.edu.hk

1 Introduction

ASCII art is a technique of composing pictures with printable text
characters [Wikipedia 2009]. It stemmed from the inability of
graphical presentation on early computers. Hence text characters
are used in place of graphics. Even with the wide availability of
digital images and graphics nowadays, ASCII art remains popular
due to the enormous growth of text-based communication channels
over the Internet and mobile communication networks, such as in-
stant messenger systems, Usenet news, discussion forums, email
and short message services (SMS). In addition, ASCII art has al-
ready evolved into a popular art form in cyberspace.

ASCII art can be roughly divided into two major styles, tone-based
and structure-based. While tone-based ASCII art maintains the in-
tensity distribution of the reference image (Figure 2(b)), structure-
based ASCII art captures the major structure of the image con-
tent (Figure 2(c)). In general, tone-based ASCII art requires a
much higher text resolution to represent the same content than the



23

Lainzine, Issue 1 (April 2015)

Structure-based ASCII Art

Xuemiao Xu∗ Linling Zhang† Tien-Tsin Wong‡

The Chinese University of Hong Kong

Figure 1: Structure-based ASCII art generated by our method (the input is “banquet” of Figure 18). Characters were chosen from the set of
95 printable ASCII characters.

Abstract

The wide availability and popularity of text-based communication
channels encourage the usage of ASCII art in representing im-
ages. Existing tone-based ASCII art generation methods lead to
halftone-like results and require high text resolution for display, as
higher text resolution offers more tone variety. This paper presents
a novel method to generate structure-based ASCII art that is cur-
rently mostly created by hand. It approximates the major line struc-
ture of the reference image content with the shape of characters.
Representing the unlimited image content with the extremely lim-
ited shapes and restrictive placement of characters makes this prob-
lem challenging. Most existing shape similarity metrics either fail
to address the misalignment in real-world scenarios, or are unable
to account for the differences in position, orientation and scaling.
Our key contribution is a novel alignment-insensitive shape sim-
ilarity (AISS) metric that tolerates misalignment of shapes while
accounting for the differences in position, orientation and scaling.
Together with the constrained deformation approach, we formulate
the ASCII art generation as an optimization that minimizes shape
dissimilarity and deformation. Convincing results and user study
are shown to demonstrate its effectiveness.

Keywords: ASCII art, shape similarity

∗e-mail: xmxu@cse.cuhk.edu.hk
†e-mail: llzhang@cse.cuhk.edu.hk
‡e-mail: ttwong@cse.cuhk.edu.hk

1 Introduction

ASCII art is a technique of composing pictures with printable text
characters [Wikipedia 2009]. It stemmed from the inability of
graphical presentation on early computers. Hence text characters
are used in place of graphics. Even with the wide availability of
digital images and graphics nowadays, ASCII art remains popular
due to the enormous growth of text-based communication channels
over the Internet and mobile communication networks, such as in-
stant messenger systems, Usenet news, discussion forums, email
and short message services (SMS). In addition, ASCII art has al-
ready evolved into a popular art form in cyberspace.

ASCII art can be roughly divided into two major styles, tone-based
and structure-based. While tone-based ASCII art maintains the in-
tensity distribution of the reference image (Figure 2(b)), structure-
based ASCII art captures the major structure of the image con-
tent (Figure 2(c)). In general, tone-based ASCII art requires a
much higher text resolution to represent the same content than the



24

Lainzine, Issue 1 (April 2015)

(a) (b) (c)
Figure 2: ASCII art. (a) A reference image. (b) Tone-based ASCII
art generated by the program PicText, requiring the text resolution
30×29 in order to depict the content, though not very clearly. (c)
Structure-based ASCII art manually designed by an artist, with a
significant lower text resolution of 8×7.

structure-based one, as the high text resolution is required for pro-
ducing sufficient tone variety. On the other hand, structure-based
ASCII art utilizes the shape of characters to approximate the image
structure (Figure 2(c)), without mechanically following the pixel
values. To the extreme, smileys, such as :) and :(, are the sim-
plest examples of structure-based ASCII art.
Existing computational methods can only handle tone-based ASCII
art, as its generation can be regarded as a dithering problem with
characters [Ulichney ]. O’Grady and Rickard [2008] improved
such dithering process by reducing the mismatches bewteen char-
acter pixels and the reference image pixels. Nevertheless, high
text resolution is still required for a clear depiction. Note that
ASCII art gradually loses its stylishness (and approaches to stan-
dard halftone images) as its text resolution increases. In addition, as
the text screens of mobile devices are limited, the character-saving
structure-based ASCII art is more stylish and practical for commer-
cial usage such as text-based advertisement. However, satisfactory
structure-based ASCII art is mostly created by hand. The major
challenge is the inability to depict the unlimited image content with
the limited character shapes and the restrictive placement of char-
acters over the character grid.
To increase the chance of matching appropriate characters, artists
tolerate the misalignment between the characters and the reference
image structure (Figure 3(b)), and even intelligently deform the ref-
erence image (Figure 3(c)). In fact, shape matching in ASCII art ap-
plication is a general pattern recognition problem. In real-world ap-
plications, such as optical character recognition (OCR) and ASCII
art, we need a metric to tolerate misalignment and also account for
the differences in transformation (translation, orientation and scal-
ing). For instance, in recognizing the characters “o” and “o” during
the OCR, both scaling and translation count; while in recognizing
characters “6” and “9”, the orientation counts. Unfortunately, ex-
isting shape similarity metrics are either alignment-sensitive [Wang
et al. 2004] or transformation-invariant [Mori et al. 2005; Belongie
et al. 2002; Arkin et al. 1991], and hence not applicable.
In this paper, we propose a novel method to generate structure-
based ASCII art to capture the major structure of the reference im-
age. Inspired by the two matching strategies employed by ASCII
artists, our method matches characters based on a novel alignment-
insensitive shape similarity metric and allows a constrained defor-
mation of the reference image to increase the chance of character
matching. The proposed similarity metric tolerates the misalign-
ment while it accounts for the differences in transformation. Given
an input and a target text resolution, we formulate the ASCII art
generation as an optimization by minimizing the shape dissimilar-
ity and deformation. We demonstrate its effectiveness by several
convincing examples and a user study. Figure 1 shows the result
automatically obtained by our method.

(a) (c)(b)
Figure 3: (a) By inspecting the overlapping image between the edge
map of the reference image (Figure 2(a)) and the structured-based
ASCII art (Figure 2(c)), one can identify the two matching strate-
gies employed by ASCII artists: (b) misalignment is tolerated; (c)
the reference image is deformed to increase the chance of matching.

2 Related Work

As a culture in the cyberspace, the best references of ASCII
art can be found online. There is collaboratively pre-
pared frequently asked questions (FAQ) for Usenet newsgroup
alt.ascii-art [CJRandall 2003], which keeps track of the
update information and resources related to ASCII art. Other
sources of reference are online tutorials written by individual en-
thusiasts [Wakenshaw 2000; Crawford 1994; Au 1995]. To pro-
duce ASCII art, one can type it using a standard text editor. It is
not as intuitive as painting, however. Enthusiasts developed inter-
active painting software [Davis 1986; Gebhard 2009] to allow users
to directly paint the characters via a painting metaphor.

Besides the interactive tools, there are attempts to automatically
convert images into ASCII art [Klose and McIntosh 2000; De-
Fusco 2007; O’Grady and Rickard 2008]. However, they can only
generate tone-based ASCII art, as it can be regarded as a dither-
ing process. The major academic study is in the area of halfton-
ing [Ulichney ; Bayer 1973; Floyd and Steinberg 1974]. O’Grady
and Rickard [2008] tailor-made a method for tone-based ASCII art
by minimizing the difference between the characters and the refer-
ence image in a pixel-by-pixel manner. However, all these methods
cannot be extended to generate structure-based ASCII art due to
their inability to allow misalignment and deformation. In this pa-
per, we focus on the generation of structure-based ASCII art as it
depicts a clearer picture within a smaller text space. Its generation
can no longer be regarded as a dithering process. Instead, the shape
similarity plays a major role in its generation. 3D collage [Gal et al.
2007] relies on shape matching to aggregate smaller objects to form
a large compound one. While transformation invariance is needed
during collaging, our character matching must be transformation-
aware and with restrictive placement.

3 Overview

An overview of our structure-based ASCII art generation is shown
in Figure 4. The basic input is a vector graphics containing only
polylines. A raster image can be converted to vector via vector-
ization. As the limited shapes and restrictive placement of text
characters may not be able to represent unlimited image content,
ASCII artists slightly deform the input to increase the chance of
character matching. So we mimic such deformation during opti-
mization by iteratively adjusting the vertex positions of the input
polylines. Given the vector-based line art, we rasterize it and divide
the raster image into grid cells. Each cell is then best-matched with
a character based on the proposed alignment-insensitive shape sim-
ilarity metric (Section 4). This completes one iteration of optimiza-
tion, and the objective value, which composes of the deformation of
the vectorized picture (Section 5) and the dissimilarity between the

Input Vectorized�polylines

Optimization

Deformed�image Substituted�with�best
matched�characters

Result

Figure 4: The overview of our framework.

O O 69
(a) (b)

Figure 5: Real-world applications, like OCR and ASCII art, require
a similarity metric to account for scaling, translation and orienta-
tion, as well as tolerate misalignment. (a) A scanned image for
OCR input. (b) Misalignment with ideal characters (in green) ex-
ists.

characters and the deformed picture, can be computed. In the next
iteration, we adjust the vertex positions of the vector-based line art
with a simulated annealing strategy (detailed in Section 5). Since
the line art is changed, the above rasterization-and-AISS-matching
process is repeated to obtain a new set of best-matched characters.
Such deformation-and-matching process continues until the objec-
tive value is minimized.
Before the optimization, we need to prepare the input and the
characters. Since character fonts may have varying thicknesses
and widths, we simplify the problem by ignoring font thickness
(via centerline extraction) and handling only fixed-width charac-
ter fonts. We further vectorize the characters and represent them
with polylines. In order to focus only on the shapes during match-
ing, both the input polylines and the characters are rasterized with
the same line thickness (one pixel-width in our system). Note that
the characters are only rasterized once as they can be repeatedly
used. Before each optimization step, the input polylines are raster-
ized according to the target text resolution, Rw × Rh, where Rw

and Rh are the maximum number of characters along the horizon-
tal and vertical directions respectively. As the aspect ratio of our
characters, α = Th/Tw, is fixed, the text resolution can be solely
determined by a single variable Rw, as Rh = �H/(α�W/Rw�)�,
where Tw and Th are the width and height of a rasterized character
image in the unit of pixels respectively. W and H are the width and
height of the input image. Hence, the input polylines are scaled and
rasterized to a domain of TwRw × ThRh. Furthermore, since the
vector-based input is scalable (W and H can be scaled up or down),
users may opt for allowing the system to determine the optimal text
resolution (Rw × Rh) by choosing the minimized objective values
among results of multiple resolutions, as our objective function is
normalized to the text resolution.

4 Alignment-Insensitive Shape Similarity

The key to best-match the content in a grid cell with a charac-
ter is the shape similarity metric. It should tolerate misalignment
and, simultaneously, account for the differences in transformation
such as, position, orientation and scaling. Existing shape similar-
ity metrics can be roughly classified into two extreme categories,
alignment-sensitive metrics and transformation-invariant metrics.

(a) (b) (c)

.

.

.

1

2

N

Figure 6: Alignment-insensitive shape similarity. (a) A log-polar
diagram to quantify the letter “A” with the corresponding histogram
underneath. Its row and column correspond to the angular and ra-
dial dimensions of the log-polar diagram respectively. (b) N points
are regularly sampled in a grid layout, each with a log-polar dia-
gram. (c) The corresponding log-polar histograms.

Peak signal-to-noise ratio (PSNR) or mean-squared error (MSE),
and the well-known structural similarity index (SSIM) [Wang et al.
2004] belong to the former category. Their similarity values drop
significantly when two equal images are slightly misaligned during
the comparison. On the other hand, the transformation-invariant
metrics are designed to be invariant to translation, orientation and
scaling. These metrics include shape context descriptor [Mori et al.
2005; Belongie et al. 2002], Fourier descriptor [Zahn and Roskies
1972], skeleton-based shape matching [Sundar et al. 2003; Goh
2008; Torsello and Hancock 2004], curvature-based shape match-
ing [Cohen et al. 1992; Milios 1989], and polygonal shape match-
ing [Arkin et al. 1991]. In our case, the transformation matters.
Hence, no existing work is suitable for our application.
In fact, the above metric requirement is not only dedicated to our
application, but applicable for real-world applications of pattern
recognition and image analysis, such as OCR. For example, Fig-
ure 5(a) shows a scanned image ready for OCR. The characters
“o”, “o”, “6” and “9” are magnified in Figure 5(b) for better visu-
alization. It is not surprising that the scanned character images (in
black) may be slightly misaligned to the ideal characters (in green)
no matter how perfect the global registration is. Hence, an align-
ment insensitive shape similarity metric is essential. Besides the
misalignment, the transformation difference has to be accounted for
in OCR as well. Characters “o” and “o” have the similar shapes, but
are different in position and scaling. Characters “9” and “6” also
share the same shape but with a difference in orientation. In other
words, the shape information alone is not sufficient for recognition,
since position, orientation and scaling have their own special mean-
ings. Therefore, the desired metric must also account for position,
orientation, scaling, as well as the shape information.

Misalignment Tolerance Misalignment is, in essence, a small-
scale transformation. To tolerate misalignment, a histogram of a
log-polar diagram [Mori et al. 2005] is used as the basic building



25

Lainzine, Issue 1 (April 2015)

(a) (b) (c)
Figure 2: ASCII art. (a) A reference image. (b) Tone-based ASCII
art generated by the program PicText, requiring the text resolution
30×29 in order to depict the content, though not very clearly. (c)
Structure-based ASCII art manually designed by an artist, with a
significant lower text resolution of 8×7.

structure-based one, as the high text resolution is required for pro-
ducing sufficient tone variety. On the other hand, structure-based
ASCII art utilizes the shape of characters to approximate the image
structure (Figure 2(c)), without mechanically following the pixel
values. To the extreme, smileys, such as :) and :(, are the sim-
plest examples of structure-based ASCII art.
Existing computational methods can only handle tone-based ASCII
art, as its generation can be regarded as a dithering problem with
characters [Ulichney ]. O’Grady and Rickard [2008] improved
such dithering process by reducing the mismatches bewteen char-
acter pixels and the reference image pixels. Nevertheless, high
text resolution is still required for a clear depiction. Note that
ASCII art gradually loses its stylishness (and approaches to stan-
dard halftone images) as its text resolution increases. In addition, as
the text screens of mobile devices are limited, the character-saving
structure-based ASCII art is more stylish and practical for commer-
cial usage such as text-based advertisement. However, satisfactory
structure-based ASCII art is mostly created by hand. The major
challenge is the inability to depict the unlimited image content with
the limited character shapes and the restrictive placement of char-
acters over the character grid.
To increase the chance of matching appropriate characters, artists
tolerate the misalignment between the characters and the reference
image structure (Figure 3(b)), and even intelligently deform the ref-
erence image (Figure 3(c)). In fact, shape matching in ASCII art ap-
plication is a general pattern recognition problem. In real-world ap-
plications, such as optical character recognition (OCR) and ASCII
art, we need a metric to tolerate misalignment and also account for
the differences in transformation (translation, orientation and scal-
ing). For instance, in recognizing the characters “o” and “o” during
the OCR, both scaling and translation count; while in recognizing
characters “6” and “9”, the orientation counts. Unfortunately, ex-
isting shape similarity metrics are either alignment-sensitive [Wang
et al. 2004] or transformation-invariant [Mori et al. 2005; Belongie
et al. 2002; Arkin et al. 1991], and hence not applicable.
In this paper, we propose a novel method to generate structure-
based ASCII art to capture the major structure of the reference im-
age. Inspired by the two matching strategies employed by ASCII
artists, our method matches characters based on a novel alignment-
insensitive shape similarity metric and allows a constrained defor-
mation of the reference image to increase the chance of character
matching. The proposed similarity metric tolerates the misalign-
ment while it accounts for the differences in transformation. Given
an input and a target text resolution, we formulate the ASCII art
generation as an optimization by minimizing the shape dissimilar-
ity and deformation. We demonstrate its effectiveness by several
convincing examples and a user study. Figure 1 shows the result
automatically obtained by our method.

(a) (c)(b)
Figure 3: (a) By inspecting the overlapping image between the edge
map of the reference image (Figure 2(a)) and the structured-based
ASCII art (Figure 2(c)), one can identify the two matching strate-
gies employed by ASCII artists: (b) misalignment is tolerated; (c)
the reference image is deformed to increase the chance of matching.

2 Related Work

As a culture in the cyberspace, the best references of ASCII
art can be found online. There is collaboratively pre-
pared frequently asked questions (FAQ) for Usenet newsgroup
alt.ascii-art [CJRandall 2003], which keeps track of the
update information and resources related to ASCII art. Other
sources of reference are online tutorials written by individual en-
thusiasts [Wakenshaw 2000; Crawford 1994; Au 1995]. To pro-
duce ASCII art, one can type it using a standard text editor. It is
not as intuitive as painting, however. Enthusiasts developed inter-
active painting software [Davis 1986; Gebhard 2009] to allow users
to directly paint the characters via a painting metaphor.

Besides the interactive tools, there are attempts to automatically
convert images into ASCII art [Klose and McIntosh 2000; De-
Fusco 2007; O’Grady and Rickard 2008]. However, they can only
generate tone-based ASCII art, as it can be regarded as a dither-
ing process. The major academic study is in the area of halfton-
ing [Ulichney ; Bayer 1973; Floyd and Steinberg 1974]. O’Grady
and Rickard [2008] tailor-made a method for tone-based ASCII art
by minimizing the difference between the characters and the refer-
ence image in a pixel-by-pixel manner. However, all these methods
cannot be extended to generate structure-based ASCII art due to
their inability to allow misalignment and deformation. In this pa-
per, we focus on the generation of structure-based ASCII art as it
depicts a clearer picture within a smaller text space. Its generation
can no longer be regarded as a dithering process. Instead, the shape
similarity plays a major role in its generation. 3D collage [Gal et al.
2007] relies on shape matching to aggregate smaller objects to form
a large compound one. While transformation invariance is needed
during collaging, our character matching must be transformation-
aware and with restrictive placement.

3 Overview

An overview of our structure-based ASCII art generation is shown
in Figure 4. The basic input is a vector graphics containing only
polylines. A raster image can be converted to vector via vector-
ization. As the limited shapes and restrictive placement of text
characters may not be able to represent unlimited image content,
ASCII artists slightly deform the input to increase the chance of
character matching. So we mimic such deformation during opti-
mization by iteratively adjusting the vertex positions of the input
polylines. Given the vector-based line art, we rasterize it and divide
the raster image into grid cells. Each cell is then best-matched with
a character based on the proposed alignment-insensitive shape sim-
ilarity metric (Section 4). This completes one iteration of optimiza-
tion, and the objective value, which composes of the deformation of
the vectorized picture (Section 5) and the dissimilarity between the

Input Vectorized�polylines

Optimization

Deformed�image Substituted�with�best
matched�characters

Result

Figure 4: The overview of our framework.

O O 69
(a) (b)

Figure 5: Real-world applications, like OCR and ASCII art, require
a similarity metric to account for scaling, translation and orienta-
tion, as well as tolerate misalignment. (a) A scanned image for
OCR input. (b) Misalignment with ideal characters (in green) ex-
ists.

characters and the deformed picture, can be computed. In the next
iteration, we adjust the vertex positions of the vector-based line art
with a simulated annealing strategy (detailed in Section 5). Since
the line art is changed, the above rasterization-and-AISS-matching
process is repeated to obtain a new set of best-matched characters.
Such deformation-and-matching process continues until the objec-
tive value is minimized.
Before the optimization, we need to prepare the input and the
characters. Since character fonts may have varying thicknesses
and widths, we simplify the problem by ignoring font thickness
(via centerline extraction) and handling only fixed-width charac-
ter fonts. We further vectorize the characters and represent them
with polylines. In order to focus only on the shapes during match-
ing, both the input polylines and the characters are rasterized with
the same line thickness (one pixel-width in our system). Note that
the characters are only rasterized once as they can be repeatedly
used. Before each optimization step, the input polylines are raster-
ized according to the target text resolution, Rw × Rh, where Rw

and Rh are the maximum number of characters along the horizon-
tal and vertical directions respectively. As the aspect ratio of our
characters, α = Th/Tw, is fixed, the text resolution can be solely
determined by a single variable Rw, as Rh = �H/(α�W/Rw�)�,
where Tw and Th are the width and height of a rasterized character
image in the unit of pixels respectively. W and H are the width and
height of the input image. Hence, the input polylines are scaled and
rasterized to a domain of TwRw × ThRh. Furthermore, since the
vector-based input is scalable (W and H can be scaled up or down),
users may opt for allowing the system to determine the optimal text
resolution (Rw × Rh) by choosing the minimized objective values
among results of multiple resolutions, as our objective function is
normalized to the text resolution.

4 Alignment-Insensitive Shape Similarity

The key to best-match the content in a grid cell with a charac-
ter is the shape similarity metric. It should tolerate misalignment
and, simultaneously, account for the differences in transformation
such as, position, orientation and scaling. Existing shape similar-
ity metrics can be roughly classified into two extreme categories,
alignment-sensitive metrics and transformation-invariant metrics.

(a) (b) (c)

.

.

.

1

2

N

Figure 6: Alignment-insensitive shape similarity. (a) A log-polar
diagram to quantify the letter “A” with the corresponding histogram
underneath. Its row and column correspond to the angular and ra-
dial dimensions of the log-polar diagram respectively. (b) N points
are regularly sampled in a grid layout, each with a log-polar dia-
gram. (c) The corresponding log-polar histograms.

Peak signal-to-noise ratio (PSNR) or mean-squared error (MSE),
and the well-known structural similarity index (SSIM) [Wang et al.
2004] belong to the former category. Their similarity values drop
significantly when two equal images are slightly misaligned during
the comparison. On the other hand, the transformation-invariant
metrics are designed to be invariant to translation, orientation and
scaling. These metrics include shape context descriptor [Mori et al.
2005; Belongie et al. 2002], Fourier descriptor [Zahn and Roskies
1972], skeleton-based shape matching [Sundar et al. 2003; Goh
2008; Torsello and Hancock 2004], curvature-based shape match-
ing [Cohen et al. 1992; Milios 1989], and polygonal shape match-
ing [Arkin et al. 1991]. In our case, the transformation matters.
Hence, no existing work is suitable for our application.
In fact, the above metric requirement is not only dedicated to our
application, but applicable for real-world applications of pattern
recognition and image analysis, such as OCR. For example, Fig-
ure 5(a) shows a scanned image ready for OCR. The characters
“o”, “o”, “6” and “9” are magnified in Figure 5(b) for better visu-
alization. It is not surprising that the scanned character images (in
black) may be slightly misaligned to the ideal characters (in green)
no matter how perfect the global registration is. Hence, an align-
ment insensitive shape similarity metric is essential. Besides the
misalignment, the transformation difference has to be accounted for
in OCR as well. Characters “o” and “o” have the similar shapes, but
are different in position and scaling. Characters “9” and “6” also
share the same shape but with a difference in orientation. In other
words, the shape information alone is not sufficient for recognition,
since position, orientation and scaling have their own special mean-
ings. Therefore, the desired metric must also account for position,
orientation, scaling, as well as the shape information.

Misalignment Tolerance Misalignment is, in essence, a small-
scale transformation. To tolerate misalignment, a histogram of a
log-polar diagram [Mori et al. 2005] is used as the basic building



26

Lainzine, Issue 1 (April 2015)

block of our shape descriptor (Figure 6(a)). This log-polar his-
togram measures the shape feature in a local neighborhood, covered
by a log-polar window. Its bins uniformly partition the local neigh-
borhood in log-polar space. For each bin, the grayness of the shape
is accumulated and used as one component in the histogram. As
the bins are uniform in log-polar space, the histogram is more sen-
sitive to the positions of nearby points than to those farther away.
Moreover, since only the sum of pixels within the same bin is rele-
vant, it is inherently insensitive to small shape perturbations, which
leads to its misalignment tolerance nature. In other words, the de-
gree of misalignment tolerance is implicitly defined in the log-polar
diagram. During the pixel summation, black pixel has a grayness
of 1 while the white one is 0. The bin value h(k) of the k-th bin is
computed as h(k) =

∑

(q−p)∈bin(k)
I(q), where q is the position

of the current pixel; (q − p) is the relative position to the center
of the log-polar window, p; I(q) returns the grayness at position q.
The lower sub-image in Figure 6(a) visualizes the feature vector h
with respect to p (the blue dot).

Transformation Awareness Unlike the original transformation-
invariance scheme in [Mori et al. 2005], we propose a novel sam-
pling layout of log-polar diagrams in order to account for the trans-
formation difference. The log-polar histogram can natively account
for orientation. The bin values change as the content rotates. To ac-
count for scaling, all log-polar histograms share the same scale. To
account for translation (or position), N points are regularly sampled
over the image in a grid layout (Figure 6(b)). Both the reference
image in a cell and the character image are sampled with the same
sampling pattern. For each sample point, a log-polar histogram is
measured. The feature vectors (histograms) of the sample points are
then concatenated to describe the shape, as shown in Figure 6(c).
The shape similarity between two shapes, S and S′, is measured by
comparing their feature vectors in a point-by-point basis, given by

DAISS(S, S′) =
1

M

∑

i∈N

||hi − h′
i||, (1)

where hi (h′
i) is the feature vector of the i-th sample point on S

(S′); M = (n+n′) is the normalization factor and n (n′) is the total
grayness of the shape S (S′). This normalization factor counteracts
the influence of absolute grayness.

In all the experiments, histograms were empirically constructed
with 5 bins along the radial axis in log space, and 12 bins along
the angular axis. The radius of the coverage is selected to be about
half of the shorter side of a character. The number of sample points,
N , equals (Tw/2) × (Th/2). To suppress aliasing due to the dis-
crete nature of bins, the image is filtered by a Gaussian kernel of
size 7×7 before measuring the shape feature.

Comparison to Existing Metrics We evaluate the metric by
comparing it to three commonly used metrics, including the classi-
cal shape context (a translation- and scale- invariant metric), SSIM
(an alignment-sensitive, structure similarity metric), and RMSE
(root mean squared error) after blurring. For the last metric, RMSE
is measured after blurring the compared images by a Gaussian ker-
nel of 7×7, as one may argue that our metric is similar to RMSE
after blurring the images.
The effectiveness of our metric is demonstrated in Figure 7, in
which we query four different shapes (the first column). For each
metric, the best-matched character is determined from a set of 95
printable ASCII characters. From the matching results, shape con-
text over-emphasizes the shape and ignores the position (as demon-
strated by queries 2 to 4). On the other hand, the alignment-
sensitive nature of SSIM and RMSE drives them to maximize the
overlapping area between the query image and the character, while

Query Our metric Shape�context RMSE
(after��blurring)

SSIM

(1)

(2)

(3)

(4)

Figure 7: Comparison of four shape similarity metrics. From left to
right: our metric, shape context, SSIM, and RMSE-after-blurring.

A

B

PP1

P2

P3

P4

A

B

θ
r

r’

(a)�Local�deformation (b) Accessibility

B’

A’

Figure 8: Deformation metric

paying less attention to the shape (demonstrated by queries 1 and
3). In contrast, our method strives for a balance between shape and
position in all results. The query of a long center-aligned horizontal
line (query 4) demonstrates the advantage of our metric. Shape con-
text maximizes shape similarity, ignores large displacement, and
chooses the longer underscore character “ ” to match the long line.
SSIM and RMSE match the shape with an equal sign “=” because
its lower line overlaps with the query image. Our method pays at-
tention to the shape (a single line), tolerates a slight misalignment,
and chooses a shorter hyphen “-” as the best match.

5 Optimization

Deformation Metric To raise the chance of matching characters,
ASCII artists intelligently deform the reference image. We mimic
such deformation during our optimization. We deform the reference
image by adjusting the vertex positions of the vectorized polylines.
However, unconstrained deformation may destroy the global struc-
ture of the input. We designed a metric to quantify and minimize
the deformation values during the optimization process. This con-
sists of two terms, local deformation constraint and accessibility
constraint.

Local Deformation Constraint The first term measures the local de-

formation of a line segment, in terms of orientation and scaling.
Consider the original line segment AB as deformed to A′B′ in
Figure 8(a). As we allow global translation during the deformation,
the local deformation of line segment AB is measured in a relative
sense, as follows,

Dlocal(AB) = max {Vθ(AB), Vr(AB)} , (2)

where Vθ(AB) = exp(λ1θ), and

Vr(AB) = max

{

exp(λ2|r′ − r|), exp

(

λ3 max{r, r′}
min{r, r′}

)}

,

θ ∈ [0, π] is the angle between the original and the deformed line
segments. r and r′ denote the lengths of the original and deformed

(a)�Iteration�0
=��695.76E

(b)�Iteration�60
=��425.33E

(c)�Iteration�120
=��375.32E

(d)�Iteration�155
=��365.76E

Figure 10: Intermediate results during optimization. The input is Figure 18(s3).

(c)(b)(a)
Figure 9: The green and black lines indicate the original and de-
formed polylines respectively. The input is Figure 18(s3). (a) With
the local deformation constraint alone, the drift of circular windows
cannot be avoided. (b) With local and accessibility constraints, the
drift can be avoided. (c) Visualization of the deformation value of
each line segment in (b). For visualization purpose, the deformation
values are non-linearly mapped.

line segments. Parameters λ1, λ2, and λ3 are the weights, and em-
pirically set to values of 8/π, 2/min{Tw, Th}, and 0.5, respec-
tively, in all the experiments. When there is no local deformation,
Dlocal = 1.

Accessibility Constraint The local deformation constraint alone
can only prevent the over-deformation in the local scale. It can-
not avoid the over-deformation in a global scale, as demonstrated
in Figure 9(a). Three circular windows drift away from their orig-
inal locations and destroy the layout, even though each of them is
not over-deformed in a local sense. To constrain the deformation
in a global scale, we propose a 2D accessibility constraint, inspired
by the surface exposure [Hsu and Wong 1995] and 3D accessibil-
ity [Miller 1994]. This maintains the relative orientation and posi-
tion between the current line segment and its surrounding line seg-
ments.

To compute the accessibility of the current line segment, say AB in
Figure 8(b), multiple rays are shot from the midpoint, P , of AB
towards the surrounding circle in order to determine the closest
surrounding line segments. For each intersected line segment, the
nearest point, Pi, is determined, forming an imaginary line segment
PPi. The accessibility is then computed as

Daccess(AB) =

nl
∑

i=1

wiDlocal(PPi), (3)

where nl is the total number of intersecting line segments to P .
Dlocal(PPi) is defined in Equation 2; wi is the weight, computed
as the normalized distance wi = |PPi|/(

∑nl

i=1
|PPi|). Its value is

higher when the corresponding line segment is closer to P . Hence,
the overall metric of controlling the deformation is,

Ddeform(AB) = max{Dlocal(AB), Daccess(AB)}, (4)

where Ddeform = 1 when there is no deformation. Figure 9(c) visu-
alizes Ddeform of the deformed image (Figure 9(b)) by color-coding
each line segment with lighter value indicating higher deformation,
and vice versa. As the objective function is computed on the ba-
sis of a character cell, the deformation value of a character cell j,
Dj

deform, is computed. All line segments intersecting the current
cell j are identified, as denoted by the set {Lj}. li is the length of
the i-th line segment Li (partial or whole) in {Lj} occupied by cell
j. Then, the deformation value of cell j is then computed as the
weighted average of deformation values of involved line segments,

Dj
deform =

∑

i∈{Lj}

l̃iDdeform(Li), where l̃i =
li

∑

i∈{Lj} li
. (5)

Objective Function With the shape similarity and deformation
metrics, the overall objective function can be defined. Given a par-
ticular text resolution, our optimization goal is to minimize the en-
ergy E,

E =
1

K

m
∑

j=1

Dj
AISS · Dj

deform, (6)

where m is the total number of character cells, and K is the num-
ber of non-empty cells, and is used as the normalization factor.
Dj

AISS is the dissimilarity between the j-th cell’s content and its
best-matched character, as defined in Equation 1. The term Dj

deform
is the deformation value of the j-th cell. When there is no deforma-
tion, Dj

deform = 1; hence E is purely dependent on Dj
AISS. Note

that the energy values of different text resolutions are directly com-
parable, as our energy function is normalized. The lower row of
Figure 12 demonstrates such comparability by showing our results
in three text resolutions along with their energies. The middle one
(28×21) with the smallest energy corresponds to the most pleas-
ant result, while the visually poor result on the left has a relatively
larger energy.

We employ a simulated annealing strategy during the discrete op-
timization. In each iteration, we randomly select one vertex, and
randomly displace its position with a distance of at most d. Here,
d is the length of the longer side of the character image. Then,
all affected grid cells due to this displacement are identified and
best-matched with the character set again. If the recomputed E
is reduced, the displacement is accepted. Otherwise, a transition
probability Pr = exp(−δ/t) is used to make the decision, where
δ is the energy difference between two iterations; t = 0.2tac0.997

is the temperature; c is the iteration index; ta is the initial average
matching error of all grid cells. If Pr is smaller than a random num-
ber in [0, 1], this displacement is accepted; otherwise, it is rejected.
The optimization is terminated whenever E is not reduced for co

consecutive iterations, where co = 5000 in our implementation.



27

Lainzine, Issue 1 (April 2015)

block of our shape descriptor (Figure 6(a)). This log-polar his-
togram measures the shape feature in a local neighborhood, covered
by a log-polar window. Its bins uniformly partition the local neigh-
borhood in log-polar space. For each bin, the grayness of the shape
is accumulated and used as one component in the histogram. As
the bins are uniform in log-polar space, the histogram is more sen-
sitive to the positions of nearby points than to those farther away.
Moreover, since only the sum of pixels within the same bin is rele-
vant, it is inherently insensitive to small shape perturbations, which
leads to its misalignment tolerance nature. In other words, the de-
gree of misalignment tolerance is implicitly defined in the log-polar
diagram. During the pixel summation, black pixel has a grayness
of 1 while the white one is 0. The bin value h(k) of the k-th bin is
computed as h(k) =

∑

(q−p)∈bin(k)
I(q), where q is the position

of the current pixel; (q − p) is the relative position to the center
of the log-polar window, p; I(q) returns the grayness at position q.
The lower sub-image in Figure 6(a) visualizes the feature vector h
with respect to p (the blue dot).

Transformation Awareness Unlike the original transformation-
invariance scheme in [Mori et al. 2005], we propose a novel sam-
pling layout of log-polar diagrams in order to account for the trans-
formation difference. The log-polar histogram can natively account
for orientation. The bin values change as the content rotates. To ac-
count for scaling, all log-polar histograms share the same scale. To
account for translation (or position), N points are regularly sampled
over the image in a grid layout (Figure 6(b)). Both the reference
image in a cell and the character image are sampled with the same
sampling pattern. For each sample point, a log-polar histogram is
measured. The feature vectors (histograms) of the sample points are
then concatenated to describe the shape, as shown in Figure 6(c).
The shape similarity between two shapes, S and S′, is measured by
comparing their feature vectors in a point-by-point basis, given by

DAISS(S, S′) =
1

M

∑

i∈N

||hi − h′
i||, (1)

where hi (h′
i) is the feature vector of the i-th sample point on S

(S′); M = (n+n′) is the normalization factor and n (n′) is the total
grayness of the shape S (S′). This normalization factor counteracts
the influence of absolute grayness.

In all the experiments, histograms were empirically constructed
with 5 bins along the radial axis in log space, and 12 bins along
the angular axis. The radius of the coverage is selected to be about
half of the shorter side of a character. The number of sample points,
N , equals (Tw/2) × (Th/2). To suppress aliasing due to the dis-
crete nature of bins, the image is filtered by a Gaussian kernel of
size 7×7 before measuring the shape feature.

Comparison to Existing Metrics We evaluate the metric by
comparing it to three commonly used metrics, including the classi-
cal shape context (a translation- and scale- invariant metric), SSIM
(an alignment-sensitive, structure similarity metric), and RMSE
(root mean squared error) after blurring. For the last metric, RMSE
is measured after blurring the compared images by a Gaussian ker-
nel of 7×7, as one may argue that our metric is similar to RMSE
after blurring the images.
The effectiveness of our metric is demonstrated in Figure 7, in
which we query four different shapes (the first column). For each
metric, the best-matched character is determined from a set of 95
printable ASCII characters. From the matching results, shape con-
text over-emphasizes the shape and ignores the position (as demon-
strated by queries 2 to 4). On the other hand, the alignment-
sensitive nature of SSIM and RMSE drives them to maximize the
overlapping area between the query image and the character, while

Query Our metric Shape�context RMSE
(after��blurring)

SSIM

(1)

(2)

(3)

(4)

Figure 7: Comparison of four shape similarity metrics. From left to
right: our metric, shape context, SSIM, and RMSE-after-blurring.

A

B

PP1

P2

P3

P4

A

B

θ
r

r’

(a)�Local�deformation (b) Accessibility

B’

A’

Figure 8: Deformation metric

paying less attention to the shape (demonstrated by queries 1 and
3). In contrast, our method strives for a balance between shape and
position in all results. The query of a long center-aligned horizontal
line (query 4) demonstrates the advantage of our metric. Shape con-
text maximizes shape similarity, ignores large displacement, and
chooses the longer underscore character “ ” to match the long line.
SSIM and RMSE match the shape with an equal sign “=” because
its lower line overlaps with the query image. Our method pays at-
tention to the shape (a single line), tolerates a slight misalignment,
and chooses a shorter hyphen “-” as the best match.

5 Optimization

Deformation Metric To raise the chance of matching characters,
ASCII artists intelligently deform the reference image. We mimic
such deformation during our optimization. We deform the reference
image by adjusting the vertex positions of the vectorized polylines.
However, unconstrained deformation may destroy the global struc-
ture of the input. We designed a metric to quantify and minimize
the deformation values during the optimization process. This con-
sists of two terms, local deformation constraint and accessibility
constraint.

Local Deformation Constraint The first term measures the local de-

formation of a line segment, in terms of orientation and scaling.
Consider the original line segment AB as deformed to A′B′ in
Figure 8(a). As we allow global translation during the deformation,
the local deformation of line segment AB is measured in a relative
sense, as follows,

Dlocal(AB) = max {Vθ(AB), Vr(AB)} , (2)

where Vθ(AB) = exp(λ1θ), and

Vr(AB) = max

{

exp(λ2|r′ − r|), exp

(

λ3 max{r, r′}
min{r, r′}

)}

,

θ ∈ [0, π] is the angle between the original and the deformed line
segments. r and r′ denote the lengths of the original and deformed

(a)�Iteration�0
=��695.76E

(b)�Iteration�60
=��425.33E

(c)�Iteration�120
=��375.32E

(d)�Iteration�155
=��365.76E

Figure 10: Intermediate results during optimization. The input is Figure 18(s3).

(c)(b)(a)
Figure 9: The green and black lines indicate the original and de-
formed polylines respectively. The input is Figure 18(s3). (a) With
the local deformation constraint alone, the drift of circular windows
cannot be avoided. (b) With local and accessibility constraints, the
drift can be avoided. (c) Visualization of the deformation value of
each line segment in (b). For visualization purpose, the deformation
values are non-linearly mapped.

line segments. Parameters λ1, λ2, and λ3 are the weights, and em-
pirically set to values of 8/π, 2/min{Tw, Th}, and 0.5, respec-
tively, in all the experiments. When there is no local deformation,
Dlocal = 1.

Accessibility Constraint The local deformation constraint alone
can only prevent the over-deformation in the local scale. It can-
not avoid the over-deformation in a global scale, as demonstrated
in Figure 9(a). Three circular windows drift away from their orig-
inal locations and destroy the layout, even though each of them is
not over-deformed in a local sense. To constrain the deformation
in a global scale, we propose a 2D accessibility constraint, inspired
by the surface exposure [Hsu and Wong 1995] and 3D accessibil-
ity [Miller 1994]. This maintains the relative orientation and posi-
tion between the current line segment and its surrounding line seg-
ments.

To compute the accessibility of the current line segment, say AB in
Figure 8(b), multiple rays are shot from the midpoint, P , of AB
towards the surrounding circle in order to determine the closest
surrounding line segments. For each intersected line segment, the
nearest point, Pi, is determined, forming an imaginary line segment
PPi. The accessibility is then computed as

Daccess(AB) =

nl
∑

i=1

wiDlocal(PPi), (3)

where nl is the total number of intersecting line segments to P .
Dlocal(PPi) is defined in Equation 2; wi is the weight, computed
as the normalized distance wi = |PPi|/(

∑nl

i=1
|PPi|). Its value is

higher when the corresponding line segment is closer to P . Hence,
the overall metric of controlling the deformation is,

Ddeform(AB) = max{Dlocal(AB), Daccess(AB)}, (4)

where Ddeform = 1 when there is no deformation. Figure 9(c) visu-
alizes Ddeform of the deformed image (Figure 9(b)) by color-coding
each line segment with lighter value indicating higher deformation,
and vice versa. As the objective function is computed on the ba-
sis of a character cell, the deformation value of a character cell j,
Dj

deform, is computed. All line segments intersecting the current
cell j are identified, as denoted by the set {Lj}. li is the length of
the i-th line segment Li (partial or whole) in {Lj} occupied by cell
j. Then, the deformation value of cell j is then computed as the
weighted average of deformation values of involved line segments,

Dj
deform =

∑

i∈{Lj}

l̃iDdeform(Li), where l̃i =
li

∑

i∈{Lj} li
. (5)

Objective Function With the shape similarity and deformation
metrics, the overall objective function can be defined. Given a par-
ticular text resolution, our optimization goal is to minimize the en-
ergy E,

E =
1

K

m
∑

j=1

Dj
AISS · Dj

deform, (6)

where m is the total number of character cells, and K is the num-
ber of non-empty cells, and is used as the normalization factor.
Dj

AISS is the dissimilarity between the j-th cell’s content and its
best-matched character, as defined in Equation 1. The term Dj

deform
is the deformation value of the j-th cell. When there is no deforma-
tion, Dj

deform = 1; hence E is purely dependent on Dj
AISS. Note

that the energy values of different text resolutions are directly com-
parable, as our energy function is normalized. The lower row of
Figure 12 demonstrates such comparability by showing our results
in three text resolutions along with their energies. The middle one
(28×21) with the smallest energy corresponds to the most pleas-
ant result, while the visually poor result on the left has a relatively
larger energy.

We employ a simulated annealing strategy during the discrete op-
timization. In each iteration, we randomly select one vertex, and
randomly displace its position with a distance of at most d. Here,
d is the length of the longer side of the character image. Then,
all affected grid cells due to this displacement are identified and
best-matched with the character set again. If the recomputed E
is reduced, the displacement is accepted. Otherwise, a transition
probability Pr = exp(−δ/t) is used to make the decision, where
δ is the energy difference between two iterations; t = 0.2tac0.997

is the temperature; c is the iteration index; ta is the initial average
matching error of all grid cells. If Pr is smaller than a random num-
ber in [0, 1], this displacement is accepted; otherwise, it is rejected.
The optimization is terminated whenever E is not reduced for co

consecutive iterations, where co = 5000 in our implementation.



28

Lainzine, Issue 1 (April 2015)

(a)�shape�context (c)�RMSE�after�blurring (d)�our�metric(b)�SSIMInput
Figure 11: Comparison of ASCII art using different shape similarity metrics.

Rw E=�18 =1319.54 Rw E=�28 =�1274.24 Rw E=�35 =�1282.90

Rw =�18

Rw =�28

Rw =�35

(a)�O
G

rady�and�R
ickard

'
(b)�O

ur
m

ethod

Input

Figure 12: Our method vs. the method of O’Grady and Rickard. Rw is the width of the text resolution and E is the optimized energy.

Figure 10 shows the intermediate results along with their energies.
As the energy reduces, the visual quality of ASCII art improves ac-
cordingly. An animated sequence for better visualization of such
optimization is included in the auxiliary material.

6 Results and Discussions

To validate our method, we conducted multiple experiments over
a rich variety of inputs. The setting used for generating all our
examples in this paper and their running times are listed in Table 2.
Our method works with any font database of fixed character width.
This paper shows results of matching characters from ASCII code
(95 printable characters) and Shift-JIS code (475 characters only).
Figures 14 to 17 show our results. The corresponding inputs can
be found in Figure 18. Complete comparisons and results can be
found in the auxiliary material.

Metrics Comparison In Section 4, we have compared different
shape similarity metrics for matching a single character. One may
argue the visual importance of the proposed metric in generating
the entire ASCII art which may contain hundreds of characters.

To validate its importance, we compare the ASCII art results (Fig-
ure 11) generated by substituting the character matching metric in
our framework with different shape similarity metrics, including
shape context, SSIM, RMSE after blurring and our metric. Hence,
the same deformation mechanism is employed in generating all re-
sults. The result of shape context (Figure 11(a)) is most unrecog-
nizable due to the structure discontinuity caused by the neglect of
position. SSIM and RMSE preserve better structure as they place
a high priority on position. Their alignment-sensitive nature, how-
ever, leads to the loss of fine details. Among all results, our metric
generates the best approximation to the input, with the best preser-
vation of structure and fine details. The comparison demonstrates
the importance of transformation awareness and misalignment tol-
erance in preserving structure continuity and fine details.

Comparison to Existing Work Figure 2 already demonstrates
the inferiority of the more naı̈ve halftoning approach in represent-
ing clear structure. The only alternative work that was tailormade
for generating ASCII art is by O’Grady and Rickard [2008]. We
therefore compare our results to those generated by their method
in Figure 12(a). Due to its halftone nature, their method fails to
produce satisfactory (in terms of structure preservation) results for

(c)��by�our�method(b)�by�artist(a)�Input
Figure�13:�Comparison�of ASCII�art�between�an�artist’s�and�our�method. Table�2: Timing�statistics.

Text
resolut.

Running
time

Fig.�1

8mins

15mins

8mins
6minsFig.�12b

Fig.�12b

Fig.�12b
Fig.�13

Fig.�14

Time�by
artists
5�hrs

Character
set

ASCII

Shift-JIS

Shift-JIS

138X36

18X13

35X28

28X21

Fig.�11 ASCII 4mins -26X16

-

-

15mins

11mins

7mins 2�hrsASCII

Shift-JIS

Shift-JIS

52X34

31X20

35X27
Fig.�15
Fig.�16

Fig.�17a

-

-

-

Shift-JIS -

-

-

-

-Shift-JIS
Fig.�17b

Fig.�17

-

-

-

-

Shift-JIS
Shift-JISc

24X37

24X38

25X36

9mins

9mins
9mins

66X61 ASCII 12mins

all three text resolutions (from 18×13 to 35×28). All fine details
are lost in their results.

User Study To conduct a user study, artists were invited to man-
ually design ASCII art pieces for 3 test images. They were free to
choose the desired text resolution for their pieces, but the charac-
ter set was restricted to ASCII code. We then use our method and
the method by O’Grady and Rickard to generate ASCII art results
with the same text resolutions. Then, we invited 30 participants for
the user study. The source image and three ASCII art results were
shown side-by-side to the participants. Figure 13 shows our result
as well as the artist piece from one of the 3 test sets. The complete
set of comparison can be found in the auxiliary material. Each par-
ticipant graded the ASCII art using 2 scores out of a 9-point scale
([1-9] with 9 being the best). The first score was to grade the simi-
larity of the ASCII art pieces with respect to the input. The second
was to grade the clarity of content presented in the ASCII art with-
out referring to the input. Therefore, there were 18 data samples
for analysis from each of the 30 participants. Altogether 540 data
samples can be used for analysis.

From the statistics in Table 1, the results by O’Grady and Rickard
are far from satisfactory in terms of both clarity and similarity. Our
method is comparable to (but slightly poorer than) the artist produc-
tion in terms of clarity. In terms of similarity, however, our method
produced better results than the artist’s production. Such a phe-
nomenon can be explained by that fact that artists can intelligently
(creatively) modify or even drop parts of content in order to facil-
itate the ASCII approximation (e.g. hairstyle of the girl in Figure
13(b)). In some cases, they even change the aspect ratio of the in-
put to facilitate character matching. On the other hand, our method
respects the input aspect ratio and content.

Animated ASCII Art Figure 17 shows the ASCII art results of
converting an animation to a sequence of ASCII art pieces. Al-
though each frame is converted independently without explicit
maintenance of temporal coherence, the generated ASCII art se-
quence is quite satisfactory. Readers are referred to the auxiliary
material for a side-by-side comparison between the original frames
and our generated ASCII art, in an animated fashion.

Timing Performance The proposed system was implemented
on a PC with 2GHz CPU, 8 GB system memory, and an nVidia
Geforce GTX 280 GPU with 1G video memory. Table 2 summa-
rizes the timing statistics of all examples shown in this paper. The

MeanMethods

Artists
Our�method

O'Grady�and�Rickard

Standard
deviation

95% confidence interval
Lower�Bound Upper�Bound

Artists
Our�method

O'Grady�and�Rickard

Similarity

Clarity

6.86
7.36
4.42
7.18
7.09
4.15

1.32
1.13
1.82
1.25
1.30
1.80

7.116.60
7.14
4.06

6.94
6.84
3.80

7.58
4.77
7.42
7.34
4.50

Table 1: User study statistics.

second, third, and fourth columns show the corresponding text res-
olution, the character set used, and the running time for generating
our ASCII art. The running time increases as the complexity of the
input and the number of the characters increase.

Limitations Besides the fact that traditional ASCII art only works
on a fixed-width font, modern ASCII art also deals with propor-
tional fonts, e.g. Japanese Shift-JIS. Our current method does not
handle proportional placement of characters or multiple font sizes
in a single ASCII art piece. Another limitation is that we currently
do not consider the temporal consistency when we generate the an-
imation of ASCII art. To achieve this, one could first establish the
correspondence between the shapes of the adjacent frames. Then
one could constrain the deformation along the temporal dimension
to achieve temporal consistency. Since our system only accepts
vector input, real photographs or other raster images must first be
converted into outline images. This could be done either by naı̈ve
edge detection or a sophisticated line art generation method such
as [Kang et al. 2007], followed by vectorization. This also means
that our results would be affected by the quality of the vectoriza-
tion. A poorly vectorized input containing messy edges would be
faithfully represented by our system. One more limitation stems
from the extremely limited variety of characters. Most font sets do
not contain characters representing a rich variety of slopes of lines.
This makes pictures such as radial patterns very hard to be faithfully
represented.

7 Conclusion

In this paper, we present a method that mimics how ASCII artists
generate structure-based ASCII art. To achieve this, we first pro-
pose a novel alignment-insensitive metric to account for position,
orientation, scaling and shape. We demonstrate its effectiveness in



29

Lainzine, Issue 1 (April 2015)

(a)�shape�context (c)�RMSE�after�blurring (d)�our�metric(b)�SSIMInput
Figure 11: Comparison of ASCII art using different shape similarity metrics.

Rw E=�18 =1319.54 Rw E=�28 =�1274.24 Rw E=�35 =�1282.90

Rw =�18

Rw =�28

Rw =�35

(a)�O
G

rady�and�R
ickard

'
(b)�O

ur
m

ethod

Input

Figure 12: Our method vs. the method of O’Grady and Rickard. Rw is the width of the text resolution and E is the optimized energy.

Figure 10 shows the intermediate results along with their energies.
As the energy reduces, the visual quality of ASCII art improves ac-
cordingly. An animated sequence for better visualization of such
optimization is included in the auxiliary material.

6 Results and Discussions

To validate our method, we conducted multiple experiments over
a rich variety of inputs. The setting used for generating all our
examples in this paper and their running times are listed in Table 2.
Our method works with any font database of fixed character width.
This paper shows results of matching characters from ASCII code
(95 printable characters) and Shift-JIS code (475 characters only).
Figures 14 to 17 show our results. The corresponding inputs can
be found in Figure 18. Complete comparisons and results can be
found in the auxiliary material.

Metrics Comparison In Section 4, we have compared different
shape similarity metrics for matching a single character. One may
argue the visual importance of the proposed metric in generating
the entire ASCII art which may contain hundreds of characters.

To validate its importance, we compare the ASCII art results (Fig-
ure 11) generated by substituting the character matching metric in
our framework with different shape similarity metrics, including
shape context, SSIM, RMSE after blurring and our metric. Hence,
the same deformation mechanism is employed in generating all re-
sults. The result of shape context (Figure 11(a)) is most unrecog-
nizable due to the structure discontinuity caused by the neglect of
position. SSIM and RMSE preserve better structure as they place
a high priority on position. Their alignment-sensitive nature, how-
ever, leads to the loss of fine details. Among all results, our metric
generates the best approximation to the input, with the best preser-
vation of structure and fine details. The comparison demonstrates
the importance of transformation awareness and misalignment tol-
erance in preserving structure continuity and fine details.

Comparison to Existing Work Figure 2 already demonstrates
the inferiority of the more naı̈ve halftoning approach in represent-
ing clear structure. The only alternative work that was tailormade
for generating ASCII art is by O’Grady and Rickard [2008]. We
therefore compare our results to those generated by their method
in Figure 12(a). Due to its halftone nature, their method fails to
produce satisfactory (in terms of structure preservation) results for

(c)��by�our�method(b)�by�artist(a)�Input
Figure�13:�Comparison�of ASCII�art�between�an�artist’s�and�our�method. Table�2: Timing�statistics.

Text
resolut.

Running
time

Fig.�1

8mins

15mins

8mins
6minsFig.�12b

Fig.�12b

Fig.�12b
Fig.�13

Fig.�14

Time�by
artists
5�hrs

Character
set

ASCII

Shift-JIS

Shift-JIS

138X36

18X13

35X28

28X21

Fig.�11 ASCII 4mins -26X16

-

-

15mins

11mins

7mins 2�hrsASCII

Shift-JIS

Shift-JIS

52X34

31X20

35X27
Fig.�15
Fig.�16

Fig.�17a

-

-

-

Shift-JIS -

-

-

-

-Shift-JIS
Fig.�17b

Fig.�17

-

-

-

-

Shift-JIS
Shift-JISc

24X37

24X38

25X36

9mins

9mins
9mins

66X61 ASCII 12mins

all three text resolutions (from 18×13 to 35×28). All fine details
are lost in their results.

User Study To conduct a user study, artists were invited to man-
ually design ASCII art pieces for 3 test images. They were free to
choose the desired text resolution for their pieces, but the charac-
ter set was restricted to ASCII code. We then use our method and
the method by O’Grady and Rickard to generate ASCII art results
with the same text resolutions. Then, we invited 30 participants for
the user study. The source image and three ASCII art results were
shown side-by-side to the participants. Figure 13 shows our result
as well as the artist piece from one of the 3 test sets. The complete
set of comparison can be found in the auxiliary material. Each par-
ticipant graded the ASCII art using 2 scores out of a 9-point scale
([1-9] with 9 being the best). The first score was to grade the simi-
larity of the ASCII art pieces with respect to the input. The second
was to grade the clarity of content presented in the ASCII art with-
out referring to the input. Therefore, there were 18 data samples
for analysis from each of the 30 participants. Altogether 540 data
samples can be used for analysis.

From the statistics in Table 1, the results by O’Grady and Rickard
are far from satisfactory in terms of both clarity and similarity. Our
method is comparable to (but slightly poorer than) the artist produc-
tion in terms of clarity. In terms of similarity, however, our method
produced better results than the artist’s production. Such a phe-
nomenon can be explained by that fact that artists can intelligently
(creatively) modify or even drop parts of content in order to facil-
itate the ASCII approximation (e.g. hairstyle of the girl in Figure
13(b)). In some cases, they even change the aspect ratio of the in-
put to facilitate character matching. On the other hand, our method
respects the input aspect ratio and content.

Animated ASCII Art Figure 17 shows the ASCII art results of
converting an animation to a sequence of ASCII art pieces. Al-
though each frame is converted independently without explicit
maintenance of temporal coherence, the generated ASCII art se-
quence is quite satisfactory. Readers are referred to the auxiliary
material for a side-by-side comparison between the original frames
and our generated ASCII art, in an animated fashion.

Timing Performance The proposed system was implemented
on a PC with 2GHz CPU, 8 GB system memory, and an nVidia
Geforce GTX 280 GPU with 1G video memory. Table 2 summa-
rizes the timing statistics of all examples shown in this paper. The

MeanMethods

Artists
Our�method

O'Grady�and�Rickard

Standard
deviation

95% confidence interval
Lower�Bound Upper�Bound

Artists
Our�method

O'Grady�and�Rickard

Similarity

Clarity

6.86
7.36
4.42
7.18
7.09
4.15

1.32
1.13
1.82
1.25
1.30
1.80

7.116.60
7.14
4.06

6.94
6.84
3.80

7.58
4.77
7.42
7.34
4.50

Table 1: User study statistics.

second, third, and fourth columns show the corresponding text res-
olution, the character set used, and the running time for generating
our ASCII art. The running time increases as the complexity of the
input and the number of the characters increase.

Limitations Besides the fact that traditional ASCII art only works
on a fixed-width font, modern ASCII art also deals with propor-
tional fonts, e.g. Japanese Shift-JIS. Our current method does not
handle proportional placement of characters or multiple font sizes
in a single ASCII art piece. Another limitation is that we currently
do not consider the temporal consistency when we generate the an-
imation of ASCII art. To achieve this, one could first establish the
correspondence between the shapes of the adjacent frames. Then
one could constrain the deformation along the temporal dimension
to achieve temporal consistency. Since our system only accepts
vector input, real photographs or other raster images must first be
converted into outline images. This could be done either by naı̈ve
edge detection or a sophisticated line art generation method such
as [Kang et al. 2007], followed by vectorization. This also means
that our results would be affected by the quality of the vectoriza-
tion. A poorly vectorized input containing messy edges would be
faithfully represented by our system. One more limitation stems
from the extremely limited variety of characters. Most font sets do
not contain characters representing a rich variety of slopes of lines.
This makes pictures such as radial patterns very hard to be faithfully
represented.

7 Conclusion

In this paper, we present a method that mimics how ASCII artists
generate structure-based ASCII art. To achieve this, we first pro-
pose a novel alignment-insensitive metric to account for position,
orientation, scaling and shape. We demonstrate its effectiveness in



30

Lainzine, Issue 1 (April 2015)

balancing shape and transformations, comparing it to existing met-
rics. This metric should also benefit other practical applications
requiring pattern recognition. Besides, a constrained deformation
model is designed to mimic how the artists deform the input image.
The rich variety of results shown demonstrates the effectiveness of
our method. Although we have shown an application of animated
ASCII art, its temporal consistency is not guaranteed. In the future,
it is worth investigating the possibility of generating animations of
ASCII art with high temporal consistency. An extension to propor-
tional placement of characters is also worth studying. To further
control and refine the result, it would also be beneficial to allow
users to interactively highlight the important structure in the input
for preservation during the deformation.

Acknowledgments

This project is supported by the Research Grants Council of the
Hong Kong Special Administrative Region, under General Re-
search Fund (CUHK417107). We would like to thank Xueting
Liu for drawing some of the line art works, and ASCII artists on
newsmth.net including Crowyue, Zeppeli, Wolfing, and Asan
for creating the ASCII arts in our comparison between the results
by our method and by hand. Thanks also to all reviewers for their
constructive comments and guidance in shaping this paper.

References

ARKIN, E. M., CHEW, L. P., HUTTENLOCHER, D. P., KEDEM,
K., AND MITCHELL, J. S. B. 1991. An efficiently computable
metric for comparing polygonal shapes. IEEE Trans. Pattern
Anal. Mach. Intell. 13, 3, 209–216.

AU, D., 1995. Make a start in ASCII art.
http://www.ludd.luth.se/∼vk/pics/ascii/junkyard/techstuff/tutori
als/Daniel Au.html.

BAYER, B. 1973. An optimum method for two-level rendition of
continuous-tone pictures. In IEEE International Conference on
Communications, IEEE, (26–11)–(26–15).

BELONGIE, S., MALIK, J., AND PUZICHA, J. 2002. Shape match-
ing and object recognition using shape contexts. IEEE Tran. Pat-
tern Analysis and Machine Intelligience 24, 4, 509–522.

CJRANDALL, 2003. alt.ascii-art: Frequently asked questions.
http://www.ascii-art.de/ascii/faq.html.

COHEN, I., AYACHE, N., AND SULGER, P. 1992. Tracking points
on deformable objects using curvature information. In ECCV
’92, Springer-Verlag, London, UK, 458–466.

CRAWFORD, R., 1994. ASCII graphics techniques v1.0.
http://www.ludd.luth.se/∼vk/pics/ascii/junkyard/techstuff/tutori
als/Rowan Crawford.html.

DAVIS, I. E., 1986. theDraw. TheSoft Programming Services.

DEFUSCO, R., 2007. MosASCII. freeware.

FLOYD, R. W., AND STEINBERG, L. 1974. An adaptive algorithm
for spatial grey scale. In SID Int.Sym.Digest Tech.Papers, 36–37.

GAL, R., SORKINE, O., POPA, T., SHEFFER, A., AND COHEN-
OR, D. 2007. 3d collage: Expressive non-realistic modeling. In
In Proc. of 5th NPAR.

GEBHARD, M., 2009. JavE. freeware.

GOH, W.-B. 2008. Strategies for shape matching using skeletons.
Comput. Vis. Image Underst. 110, 3, 326–345.

HSU, S.-C., AND WONG, T.-T. 1995. Simulating dust accumula-
tion. IEEE Comput. Graph. Appl. 15, 1, 18–22.

KANG, H., LEE, S., AND CHUI, C. K. 2007. Coherent line draw-
ing. In ACM Symposium on Non-Photorealistic Animation and
Rendering (NPAR), 43–50.

KLOSE, L. A., AND MCINTOSH, F., 2000. Pictexter. AxiomX.

MILIOS, E. E. 1989. Shape matching using curvature processes.
Comput. Vision Graph. Image Process. 47, 2, 203–226.

MILLER, G. 1994. Efficient algorithms for local and global acces-
sibility shading. In Proceedings of SIGGRAPH 94, 319–326.

MORI, G., BELONGIE, S., AND MALIK, J. 2005. Efficient shape
matching using shape contexts. IEEE Transactions on Pattern
Analysis and Machine Intelligence 27, 11, 1832–1837.

O’GRADY, P. D., AND RICKARD, S. T. 2008. Automatic ASCII
art conversion of binary images using non-negative constraints.
In Proceedings of Signals and Systems Conference 2008 (ISSC
2008), 186–191.

SUNDAR, H., SILVER, D., GAGVANI, N., AND DICKINSON, S.
2003. Skeleton based shape matching and retrieval. SMI ’03,
130.

TORSELLO, A., AND HANCOCK, E. R. 2004. A skeletal measure
of 2d shape similarity. Computer Vision and Image Understand-
ing 95, 1, 1–29.

ULICHNEY, R. A. MIT Press.

WAKENSHAW, H., 2000. Hayley Wakenshaw’s ASCII art tutorial.
http://www.ludd.luth.se/∼vk/pics/ascii/junkyard/techstuff/tutori
als/Hayley Wakenshaw.html.

WANG, Z., BOVIK, A. C., SHEIKH, H. R., MEMBER, S., SI-
MONCELLI, E. P., AND MEMBER, S. 2004. Image quality as-
sessment: From error visibility to structural similarity. IEEE
Transactions on Image Processing 13, 600–612.

WIKIPEDIA, 2009. ASCII art. http://en.wikipedia.org/wiki/Ascii
art.

ZAHN, C. T., AND ROSKIES, R. Z. 1972. Fourier descriptors for
plane closed curves. IEEE Tran. Computers 21, 3, 269–281.

Figure�15: ASCII�art�of “Golden Temple”

(a)�Frame�1 (b)�Frame�3 (c)�Frame�6
Figure�17: Animation�of “toitorse”

Figure�16: rain”ASCII�art�of “t

Figure�18:��Inputs�of�examples�in�this�paper
(s2) “banquet” (s4) “Golden Temple” (s5) “train”

(s1) “dragon-man”

Figure�14: ASCII�art�of “dragon-man”

(s3) “church”



31

Lainzine, Issue 1 (April 2015)

balancing shape and transformations, comparing it to existing met-
rics. This metric should also benefit other practical applications
requiring pattern recognition. Besides, a constrained deformation
model is designed to mimic how the artists deform the input image.
The rich variety of results shown demonstrates the effectiveness of
our method. Although we have shown an application of animated
ASCII art, its temporal consistency is not guaranteed. In the future,
it is worth investigating the possibility of generating animations of
ASCII art with high temporal consistency. An extension to propor-
tional placement of characters is also worth studying. To further
control and refine the result, it would also be beneficial to allow
users to interactively highlight the important structure in the input
for preservation during the deformation.

Acknowledgments

This project is supported by the Research Grants Council of the
Hong Kong Special Administrative Region, under General Re-
search Fund (CUHK417107). We would like to thank Xueting
Liu for drawing some of the line art works, and ASCII artists on
newsmth.net including Crowyue, Zeppeli, Wolfing, and Asan
for creating the ASCII arts in our comparison between the results
by our method and by hand. Thanks also to all reviewers for their
constructive comments and guidance in shaping this paper.

References

ARKIN, E. M., CHEW, L. P., HUTTENLOCHER, D. P., KEDEM,
K., AND MITCHELL, J. S. B. 1991. An efficiently computable
metric for comparing polygonal shapes. IEEE Trans. Pattern
Anal. Mach. Intell. 13, 3, 209–216.

AU, D., 1995. Make a start in ASCII art.
http://www.ludd.luth.se/∼vk/pics/ascii/junkyard/techstuff/tutori
als/Daniel Au.html.

BAYER, B. 1973. An optimum method for two-level rendition of
continuous-tone pictures. In IEEE International Conference on
Communications, IEEE, (26–11)–(26–15).

BELONGIE, S., MALIK, J., AND PUZICHA, J. 2002. Shape match-
ing and object recognition using shape contexts. IEEE Tran. Pat-
tern Analysis and Machine Intelligience 24, 4, 509–522.

CJRANDALL, 2003. alt.ascii-art: Frequently asked questions.
http://www.ascii-art.de/ascii/faq.html.

COHEN, I., AYACHE, N., AND SULGER, P. 1992. Tracking points
on deformable objects using curvature information. In ECCV
’92, Springer-Verlag, London, UK, 458–466.

CRAWFORD, R., 1994. ASCII graphics techniques v1.0.
http://www.ludd.luth.se/∼vk/pics/ascii/junkyard/techstuff/tutori
als/Rowan Crawford.html.

DAVIS, I. E., 1986. theDraw. TheSoft Programming Services.

DEFUSCO, R., 2007. MosASCII. freeware.

FLOYD, R. W., AND STEINBERG, L. 1974. An adaptive algorithm
for spatial grey scale. In SID Int.Sym.Digest Tech.Papers, 36–37.

GAL, R., SORKINE, O., POPA, T., SHEFFER, A., AND COHEN-
OR, D. 2007. 3d collage: Expressive non-realistic modeling. In
In Proc. of 5th NPAR.

GEBHARD, M., 2009. JavE. freeware.

GOH, W.-B. 2008. Strategies for shape matching using skeletons.
Comput. Vis. Image Underst. 110, 3, 326–345.

HSU, S.-C., AND WONG, T.-T. 1995. Simulating dust accumula-
tion. IEEE Comput. Graph. Appl. 15, 1, 18–22.

KANG, H., LEE, S., AND CHUI, C. K. 2007. Coherent line draw-
ing. In ACM Symposium on Non-Photorealistic Animation and
Rendering (NPAR), 43–50.

KLOSE, L. A., AND MCINTOSH, F., 2000. Pictexter. AxiomX.

MILIOS, E. E. 1989. Shape matching using curvature processes.
Comput. Vision Graph. Image Process. 47, 2, 203–226.

MILLER, G. 1994. Efficient algorithms for local and global acces-
sibility shading. In Proceedings of SIGGRAPH 94, 319–326.

MORI, G., BELONGIE, S., AND MALIK, J. 2005. Efficient shape
matching using shape contexts. IEEE Transactions on Pattern
Analysis and Machine Intelligence 27, 11, 1832–1837.

O’GRADY, P. D., AND RICKARD, S. T. 2008. Automatic ASCII
art conversion of binary images using non-negative constraints.
In Proceedings of Signals and Systems Conference 2008 (ISSC
2008), 186–191.

SUNDAR, H., SILVER, D., GAGVANI, N., AND DICKINSON, S.
2003. Skeleton based shape matching and retrieval. SMI ’03,
130.

TORSELLO, A., AND HANCOCK, E. R. 2004. A skeletal measure
of 2d shape similarity. Computer Vision and Image Understand-
ing 95, 1, 1–29.

ULICHNEY, R. A. MIT Press.

WAKENSHAW, H., 2000. Hayley Wakenshaw’s ASCII art tutorial.
http://www.ludd.luth.se/∼vk/pics/ascii/junkyard/techstuff/tutori
als/Hayley Wakenshaw.html.

WANG, Z., BOVIK, A. C., SHEIKH, H. R., MEMBER, S., SI-
MONCELLI, E. P., AND MEMBER, S. 2004. Image quality as-
sessment: From error visibility to structural similarity. IEEE
Transactions on Image Processing 13, 600–612.

WIKIPEDIA, 2009. ASCII art. http://en.wikipedia.org/wiki/Ascii
art.

ZAHN, C. T., AND ROSKIES, R. Z. 1972. Fourier descriptors for
plane closed curves. IEEE Tran. Computers 21, 3, 269–281.

Figure�15: ASCII�art�of “Golden Temple”

(a)�Frame�1 (b)�Frame�3 (c)�Frame�6
Figure�17: Animation�of “toitorse”

Figure�16: rain”ASCII�art�of “t

Figure�18:��Inputs�of�examples�in�this�paper
(s2) “banquet” (s4) “Golden Temple” (s5) “train”

(s1) “dragon-man”

Figure�14: ASCII�art�of “dragon-man”

(s3) “church”




	Editors' Notes
	For Lainzine #1
	Noise
	Gopher Protocol
	Recommended Reading 
	Art of the Glitch
	Introduction to Cryptography
	Word Search
	Where Do I Start?
	FreeBSD Guide for Newbs and Dummies
	Youtube Proxy
	Structure-based ASCII Art

