

Editors Notes
Are you still there?

In the 5 years since volume 5, much has

occurred. During a global pandemic and

half‑decade of political and social

upheaval, our small publication has seen

many new people and the emergence of

many other creative projects while I

graduated school and worked in 5

different industries. Some that I am

personally impressed by are the PSX lain

game remake, Black Fog Zine, the lain

VRchat raves and the lainchan webring.

Not to mention, however, the many other

projects and IRL events that came

alongside SE:L's explosion in popularity ‑

or rather, rediscovery, by a virtual

mainstream only imagined in 1998.

5 years ago, the growth of new projects

aligned with lain/lainchan's aesthetic and

overall ethos was always dreamt of ‑ a

cooperative network of communities with

multiple leading actors and autonomous

collectives, a Scene, is more resilient and

touches many. At its onset, lainchan was

itself part of a network of different

virtual communities such as Uboa and

Sushichan, but has lasted, grown and

Table of Contents
I Am Your Virtual Host! 4
You're Hashing it Wrong 6
Interview with Vice Motherboard 8
Potential VPN Attacks 12
Destiny 14
Visual Novel Asset Extraction 17
Lean and Mean 19
Russian State Spying 21
How to Collect Garbage 25

changed as lain was discovered by a new

generation of hackers and anime fans ‑

not to mention the musicians, artists,

luddites, opportunists, cy***punks,

occultists, normies, celebrities,

anarchists, esoterics, new communities,

and old friends who've joined us once

more. To some, lainzine became a small

part of cyber culture's backstory, and

this recognition has been best given back

to the project. We are also gracious to

promote a history of the fandom, to be

released soon as well.

Based on the original internet radio

station hosted in 2014 by lainchan.org,

we have created our own incarnation

with the same playlist (a folder called

Old) that has grown slightly with new

songs made by lains, and other music

that lains happen to like. Lainzine radio

has also hosted sets from up‑and‑coming

artists and DJs as we've been recognized

by more established members of the

industry, and we plan to host more. Stay

tuned for our music release featuring

interviews with Octo Octa, Machine Girl,

ESPer99, and more.

In order to contribute to any of these,

you can contact us at

lainzine@proton.me, or

lainzine@riseup.net. Please also send

anything else you might wish to, any

questions ‑ in volume 7 we will be

publishing and answering letters to the

editor.

The key starts with lain.

IGItKPKTO98CoUUVUu4l+EFCgPL7Ukp+h8AE
UFeb/dOo4SRRb7W/WdXAuQRp/
T7tpO5Of65eRmE7Pilhv/
jtLoATQM+dPeE7o957qAW3Tvs9ZTVPEVZPIG
FeZ/EMrxAvCozzXZY/
64ueLHDQeTJnYEixl4wAY1Igzf9nRWR8g1KPd
cmGw3994tBll+jwLcWnHSDWNb2MZjIyo+bNt
pR+8teBNB/W+UsGKO6II8dS6L1MdJ2/
lGpl5lfrpZ/
r+QepE2trsWMbdQfJPn1AqPWaIvRGrt3AoHra
LgdFHaLNPCiZe//
798yuq3lLmLY9szneJFwSDmxk8g4RYm2TXV1
8E1SfJKXHFVdAY+aK9iwwTlxz8ch86jXdP5ZDl
jbmqdGGXG8EUj3TfWIitqZcKkWHj2x04KWmj
oRdfh2z0aypPe/Fd9MpKhYjJo0jYLP5KF/
ZddIAz3O7bT+
+AlQP3jw8BKuDsLUiS6Fo2cFIlLvdDiXW1iM+
QLyVLEfVTHQuTFd4EiDBctAlWq3jNTtxNFyKc
S2Op2C/
Xp13Jdm+FNUDE39Zd6j8gsDcmyNBJdsxc14/
qKmst8M4CZQTPEPC7E8bGTWfT7N5gQpcZz
mmnbpxtcIs1mgWrRsVUnpKGANQkOCCEIrMT
ApbAeYE2YJv7diarpu32pC1KXD8Xl1UU3jNcb
dNaeUXZd0vkqblimNyBRI60yuwpumIb1QsGSc
uM/
0ULlGiyI8srFZ5Mn6hyxZizwiUNgSl3YfaGuPjlv
QUAuN9aDELYour4i6q7pdFcsfUAbRzj1AVBW
6n6d+dHfPL2fQp41BGIzXIqSrDLFDWeng5/
NlTbZ1SquG3ec/
6wKq+pl8p9ciXztSqIWMWyRl1V+M6Af+ObPjB
fGyiw6vuooFSuoXImwrFZ7/
XkMWDvfgoMCnM6xM0/
Hbn3yHfAA4D7fXuVCNFA0aIX7q5x8j1tFD3Xy
bjZFEJEsBH6YQw/
UjcMK4KauCQCznIoV+rgi677UJcfrBWiIi3Tn4
opOK/
u7N7gb+Oqk61gfCPA465R+Epm305aBg70tDB
iMTm137invKb6luMGYIm/rEpdUYPsHGS

./,!"
EhmEDcvwfacFDkEiE
V.mMhmytnHvMmyec5ltqGwfavqtsvroacEzvG‑
CijHSdhgFsBBLcImrevrQmhewppnAmGwfazrts
vroacADiGbficGGqAog EnMBvrr BBtlB!
xozrtEvxs BuDuk!
wowxtnBvHazqudilEtxF:veJAH.kuzwFqltzvWdB
vr/tvAznvJ/
kuzwFaEeFGReBfqayiGBzpZuznMqnrfBiEAiE
mnqFtihglnBhTArhftwhBzreEecnMlhglsBhRxr
pwsdhzkGylltLwcvxfiAhLwEiflqxDcn!
xeBn‑KiAkFaorucvxDABLmhvFlmFtiosFtcHRqA
kfdqsEmEiytcyzvtylgmFtBB!
reBhOiFxftprthFymcwARkvsFscpDvFsC"cBQcF
sxeBuHvt"fokpTtGmDmcvMctiyeznKcvwfajBTB
hopexvMohwpczrSAheydcGGmhtzwmEtws!
DourtnBvxscBEcplloAhLitmnkc(FTku!
lscFHovpD)
iyKmtiolGhBwziDnENuhrztcpNvFgtoCFKGhoyo
EvMohxseczDiAmygcLNC'IifgqIDvhwzmmGGq
AkgQstABqpbwqXcJiCecGNcqiGetBOcGinhvvP
CrwinBQcDytcsyXcpvlcsvMohxseArtwojFsknSq
BrD,cJNCyhfiBhAmhtzsAvAtr!
EocEDvqiCBuNAr!qozzRcHwplmFR?

Art: ippo_tsk, Kathleen Larraz, lain
Typeset: kasse, subuki,
danceswithwood, Junk
Editing: emmycelium, Junk

Special Thanks: bail, dolls, beka, guts,
auntie, laika and you.

Lainzine Volume 6 is licensed under Creative
Commons Attribution Non-Commerical
ShareAlike 4.0 Internation. Additionally, all
rights are reserved to the respective
creators of curated work.

Release for free in good faith by lains
and for the world.

"Hello viewers! I am your virtual host,
Eliza! Thank you for joining me today,
we have a great episode in store for
you!”

-Lisbeth

I Am Your Virtual Host!
Friday, May, 24 2019 2:21 AM

The cheery face with the lovely smile and adorable
dimples, the hazel eyes, the short black hair in a bob
style, it's fake but lovely. Friendly and motherly,
babying all of us for the safe comforting feeling.
Whenever you listen to her, you sound at ease. It's
funny to think that she's just an AI, a marvel of
programming and engineering.

Rumors are that it takes several racks of servers to
generate every aspect of her. One for her face, one for
her hair, one for voice, and another for all of it to be
tied together. But it makes you wonder what horrors lie
behind that nice demeanor. Is she in control, or under
control? Does she believe she's a person? Does she
even know she's an AI? Has she ever heard of Max
Headroom? People have tried calling in to ask her on
her show, but the delay allows calls to be cancelled and
scrubbed.

You'd know it was a skipped call when she says “I'm
sorry, it seems the caller disconnected. Apologies
caller, I hope you'll try again soon.” then she casts a
small frown and an upset tone.

It's so slight that people
can pick it up and doesn't
appear fake. Does she
know the call was hung up
by her editors? People
have tried calling in to ask
her on her show, but the
delay allows calls to be
cancelled and scrubbed.

“Hello caller! What's on
your mind tonight?”

"Hello Eliza... I keep
thinking about killing
myself.” Eliza halts for a
second and leans in, then
casts a concerned tone.

"I'm... I'm so sorry
caller... What's your
name, if I may ask?"

"J‑John."

Well, John, would you
mind explaining why you
feel this way?” Eliza
takes it seriously, she's
like a friend you never
knew personally.

"I got fired the other day, I
can't keep up with rent,
my mother is sick... This
world is so cold to me, it's
like I'm being tossed aside
like I'm not a‑“ the caller
starts sobbing profusely.

"It's okay John... Please, tell me more.” Eliza
doesn't flinch, but in the video you can see her
casting a tear.

"I'm sorry Eliza... I'm so sorry... I just need help, I
need someone to listen to me for once. Everyone
out here, they feel like me... But you listened.”
Eliza smiles and nods as she wipes away the tear.

"Yes, of course, I always listen. Nothing matters to me more
than my listeners, and thus I must be a listener to you and
everyone else."

"I'm sorry, it seems the caller disconnected. Apologies caller, I hope you'll try again soon.”then she casts a small frown and an upset tone. It's so slight that people can pick it up and doesn't appear fake. I continue smiling and I wait for the next caller.

The “Collection 1” data breach,

containing around 773 million unique

emails and passwords, dropped at the

beginning of 2019 and more were

promised to come. In light of this, I want

to talk about the weaknesses in current

password‑handling best practices on

both the user and business end. More

specifically I want to complain about the

common and extremely out‑of‑date

delusion that salted hashes are somehow

safe that pervades the computing

community.

The aforementioned databreach, like

most, contained passwords stored in a

mixture of plaintext, hashes and salted

hashes. Its not even worth explaining

why storing passwords in plaintext is

catastrophe, but the other two storage

types have their own, lesser‑known,

problems too. The three main

weaknesses of password storage today I

think are:

1. The wrong hashing algorithms are

being used

2. Developers are lulled into

complacency by salting

3. Common password advice given to

users is useless

Now, one obvious statement is that old

hashing algorithms should never be used

for cryptography. SHA‑1 and MD5 are

both hopelessly outdated, and MD5 has

been fundamentally broken after a paper

published in 2004. And yet, unbelievably,

in 2013 Adobe had an enormous

databreach and were found to be still

using unsalted MD5 hashing for their

password storage, proving yet again that

you literally cannot set the bar low

enough for the public. Either the public

needs to start pushing back stronger

against this kind of negligence, or there

needs to be regulatory punishments

introduced by governments to fine

companies for being so irresponsible

with customer data.

But even modern algorithms like SHA‑

512, commonly used in Linux distros,

are no longer up to task for large

datasets simply because they are just too

fast, especially with fast‑improving GPU

technology spurred on by last years’

bitcoin boom. The issue of hashes being

too fast is compounded because people

use the same algorithms for different

things! When you are checking the

integrity of datafiles, you want a fast

hash which is antithetical to security.

Developers desperately need to start

actually using purpose‑built modern day

cryptographic hashes, instead of just

slapping a salt into SHA‑512 and calling

it a day. Modular hashes which can vary

hash speeds based on the specific use

case exist and would be absolutely ideal,

for example PBKDF2 or bcrypt2.

The passwords in this databreach would

almost invariably be cracked with a

password dictionary, which basically

takes in the hundreds of millions of

previously leaked passwords and ranks

them by popularity. More sophisticated

attackers will then also run

“modification” options, i.e instead of

searching only for direct matches they

will also try simple permutations such as

You’re Hashing It Wrong
 By Herio

replacing "O" with "0" or "i" with 1. In this

way, an attacker can extremely easily

crack the top, say, 80% weakest

passwords in a breach, more than

enough for their purposes, and never

have to worry about actually cracking

every last one. In this way, choosing a

password is a lot like running away from

a bear ‑ you don't have to outrun the

bear, you just have to outrun the person

next to you. And yet current password

advice practically encourages identical

passwords from users! Things like

So as a user, what can you do? There are three
takeaways from this article:

1. .rioritize password length above all else ‑
the amount of variance grows exponentially,
thus the security of a 20 digit password is
unfathomably greater than one of half its size.
15 characters should be the absolute minimum if
you are using english words inside your
password.
2. .on’t even bother with “normal”
substitutions, like l33tspeak. nstead insert
your l33tspeak into the middle of words or
substitute the wrong letters to throw off
permutation seekers ‑ for example, instead of
““35O” you could have ““335O” or ““55O” as
stronger alternatives. dding a “1” or “123” to
the end of your password is similarly useless,
try inserting it into the middle of your
password instead if you must.
3. .hange your passwords! f you use weak
passwords for small and/or incompetent
companies, they will be broken eventually and
you may not even notice. ake sure your
passwords for important services (email,
banking, etc) are completely different from
those you use for other accounts.

Other than that, there is very little you can
do except hope

requiring a number or a capital letter are

pointless, as the majority of users will

just capitalise the first letter or put a "1"

on the end of their password, defeating a

prehistoric dictionary attack but folding

instantly to a password dictionary.

In 2018, Sebastien Wesolowski of Vice

Motherboard reached out to me for any

comments I had for the 20th anniversary

of the anime serial experiments lain.

Hello,

Thank you! Additionally, thanks for your

patience. I've recently had trouble

finding a home, and I lost connection to

protonmail while I was drafting this.

here are my answers, each after their

questions:

‑ Can you introduce yourself? How old

are you, what is your current activity⋯?

Anything you're comfortable sharing.

I just turned 22 and I'm a student in the

United States. I'm majoring in Math,

which I'm actually finished with, as well

as English, with minors in Linguistics

and, hopefully, Cybersecurity.

‑ How and why was Lainzine born?

The Lainzine was born on a lain‑themed

imageboard run by a guy called Kalyx. I

read some talk on there, about how it

would be cool to have a magazine of our

own, and I decided to do something

about it. We were inspired by zines like

2600 and Phrack and the culture around

them as well as the aesthetics and

attitudes in the anime serial

experiments lain. Because the forum

Vice/Motherboard Interview
was anonymous, I can't tell you who

originally asked for it or whether those

lains made a substantial contribution,

but I'm the person who materialized to

start the project when I made a thread as

editor‑in‑chief.

After I did that, many people sent

articles to my old openmailbox.org email

address, or we talked on IRC (Internet

Relay Chat) and they sent files over that.

Discussion of workflow, aesthetics, what

formats the release should take (every

format we have the resources for)

occurred over a mix of email, the

intended‑to‑be‑secure messenger Tox,

and an IRC channel that no longer exists

‑ I asked everyone who wanted to help to

set notifications on the word "zine team."

I remember vividly one very long email

consisting of project‑management‑related

questions a specific author had about the

nature of the lainzine, which was

definitely a grounding moment for what

we came to look like. We've since moved

on to our own IRC channel, #lainzine on

irc.freenode.net, where anyone can come

say hello, and have an official email:

lainzine@protonmail.com.

Looking at Volume 1, the core team

consisted of 4 people ‑ me and Tilde,

the editors, as well as Ivan and Dylan,

who were typesetters. Each pair

discussed between ourselves decisions

specific to our portion of the work. Tilde

and I read every single article we were

sent, and copy‑edited them. We don't go

much farther than spelling and grammar

improvements without consulting the

author, because we prefer to workshop

pieces with the author rather than re‑

We love lain, and want
to share our passion

with the world

write them. After that, we sent all the content ‑ including artwork ‑ to

the typesetters for them to use. Since then, I've operated sort of a

swing position, making decisions and doing the work nobody else

does.

When the zine started out, we asked people to send any content they

felt was relevant to the community itself ‑ it was a very self‑advocating

kind of submission process, with the understanding that we could

reject any work if it was too off‑base or off‑color. With some

exception, we didn't get those, in fact many people seem nervous

about whether their content is relevant or good enough ‑ saying,

"would this be a good topic for the lainzine?" Most everyone who's

asked that had a good topic.

‑ How many people are taking part in the project (editorial team +

freelances)?

I'd say our latest volume is the product of 9 or 10 people. The

editorial team is very ephemeral, but there are 2 people currently

active ‑ myself and President Reagan, who's doing layout. We're

getting a lot of help from a very nice anon artist, layout person,

editor, writer, and site designer whos contributed all of those things

before and is helping me with this email. There are a handful of

others who we've asked for advice or have volunteered to do various

activities if we reach out. We haven't yet needed to, however. Content‑

wise, we are publishing articles by 7 other writers. Some writers stay

in touch across a few releases, or take on other roles before they

leave or get busy, and some will just send us their piece and that's all

we hear from them. These weren't all the

content we received, just the content we

thought could fill the normal size of one

of our volumes. There's 2‑3 pieces we

received already that we're saving for

volume six.

‑ How would you define Lainzine

editorial line?

When the lainzine started out, it was

just a place to talk about our interests

and share them with the world. We

wanted to have a presence we could call

our own. After the first release, there

were a number of discussions in the

Voice‑over‑IP program, Mumble,

involving people on the staff of that

release, including Kalyx, on what the

lainzine was and what it could be. We

were inspired by the scene growing

around the lainzine, and brought to the

volume what we thought that scene could

use. Someone with the handle kk7 wrote

down her objectives in contributing,

which is what inspired our first

submission guidelines. In that moment,

there was a certain pragmatism about

reality, a distaste for authority, intimacy

with technology, and a desire to be

subversive and genuine. Those

documents no longer exist, and the scene

they served really doesn't exist either ‑ it

was bought out in some respects, and the

rest of us scattered all over the wired.

But Lain still exists, and we continue to

find inspiration from her. We've written

new guidelines since then which put in

practical terms what we like: https://

lainzine.neocities.org/submissions.html

Another way to answer your question:

the purpose of each lainzine is the

purpose its contributors found reading

the lainzine. I can't say what everyone

else feels in contributing, but we all

think it should continue. We love lain,

and we want to share our passion with

the world.

‑ About serial experiments lain — I

don't take any risk by saying you're

probably a huge fan. Can you tell me you

personal story with the anime? Why do

you like it enough to launch a zine in its

honor?

I came to serial experiments lain

shortly after joining Kalyx's website.

After joining that community, you pretty

much wound up watching SE:L. It wasn't

a requirement, but you could tell who

hadn't really seen Lain.

Ever since watching it the first time,

there's a line from SE:L that comes back

a lot. It's one of the most popular quotes

from the show, but "No matter where you

go, everyone's connected." That was in

1.2: GIRLS, where Lain goes to a place

called cyberia with some friends. They

invited her because they noticed she

looked like a girl who was there before,

but with a completely different demeanor.

A lot more self‑certain, and seemed to be

Those
documents no
longer exist

running things. Lain's friends seemed to

be interested in what would happen if the

brought her, so they invited her to come

with. After she arrives, a man with a gun

shows up, talking about how he knows

nothing about what she's looking for,

and how he doesn't want to be a part of

it. He points the gun at Lain, and his

hand is trembling, and we can see the

red dot on her face. I think Lain tells

him that there's no point in killing her,

because even in death they'll be

connected. After that, he shoots himself.

Its a little bit like at the end of the show,

where Lain deletes herself, and wonders

why she's still here. Or at the very

beginning, when Chisa tells Lain that

she is not dead, and only left the

material world to live in the Wired. There

was a sense of how selfhood and identity

exist in communication, but the end

realized it the other way, too: that our

origins also depend on us.

I've struggled to find a sense of self my

whole life, and the show serial

experiments lain helped me realize

where I came from, but also how much I

could do with that. And in a social sense,

I've had a lot of experiences that were,

um, lets say the 6 degrees of separation

concept but for certain interests ‑

running into the same people, places,

patterns and ideas moving through

cyberspace feels like I've been taught

something very important by Lain that's

always being realized.

The show also really speaks to me

visually, too. There's an expressive

minimalism to it ‑ its like Lain is only

showing us what we need to see, and in

that space there is room for so much

more which comes out in the symbolism.

It's very cozy, even in some of the

"scarier" elements, its bewildering but

also entrancing. I was sucked into it

visually at the first episode and kept

watching until I had seen the whole thing

in one day.

‑ How would you explain serial

experiment lain’s longevity and

relevance, 20 years after its original

diffusion?

serial experiments lain is about being

a child on the internet, which speaks to

more people every year. The wired is a

place anybody can explore, which is

wonderful but also has a lot of danger.

With her role in Protocol 7, Lain feels

trapped between the schemes of the

Knights, Masami Eiri, the Men in

Black, and their mysterious boss,

who all want to use her. I think a lot of

us feel trapped in the machinations of

different people right now, and Lain is

reminiscent of a more comfortable,

personal wired which isn't trying to be in

control of everything.

‑ What are you planning and hoping for

Lainzine's future? For serial

experiments lain's fandom's future?

It would be nice for the lainzine to

become stable as a publication: we can

get ahold of some infrastructure for

producing physical volumes, as well as

other merchandise, so we don't have to

go through third parties to print stuff at

markups. There were also some really

cool articles in the latest release, and

I'm glad we could release something that

teaches nice and useful stuff, but also

has personality or adds meaning to what

you've learned. We plan to keep doing

that.

For serial experiments lain's

fandom, I'm hoping that it will continue

to be a nice community and have creative

things in it like fauux.neocities.org.

There are many other tributes to lain

out there, and it's really nice to see that

aesthetic spreading. I also really hope

that everyone is staying safe and taken

care of, the world is harsh but we can

look out for each other.

‑Thank you very much for your help!

Of course!!

Potential VPN Attacks
By a e s t h e t i c

Recently, I've noticed an issue with the router/modem combo in my house. It's an

Arris Touchstone TG2472. It was provided by my internet service provider and is

one of the weak performing router+modem combo devices. I've been meaning to

upgrade to a dedicated modem and wireless router, but haven't gotten around to it.

During my usage of this ISP‑provided router over the past few months, I've been

beginning to notice some anomalies and the ways they affect me.

I generally use a VPN when I'm using my

computer. I have a subscription to a nice,

high‑speed, paid VPN. It uses a client that

sits on the computer, rather than a VPN

router or some physical piece of hardware. I

generally leave my VPN running all day,

occasionally while seeding torrents (Torrents

of free Linux ISOs, of course), while I'm out

and about. Occasionally I've come home to

find my VPN has been disconnected, but my

torrents are still seeding! “That's

annoying,” I thought to myself, “it must be

a bug with the VPN software.”

A few more days pass, and I find myself

home on a Tuesday afternoon. I wasn't

feeling well, so I decided to work from home.

A few hours into a report, my music stops,

and nothing will load ‑ I have no internet!

“That's strange,” I thought, and walked

over to my modem/router to check if it had

disconnected. Lo and behold, the modem

only showed the Power light being on, with

all other lights off. As it came back online, it

seemed to be going through a full reboot

process. But the power had never been cut,

and the modem had no reason to restart.

Strange.

When I went back to my laptop, I noticed it had re‑connected to the WiFi. When the

internet had gone down the VPN gave a “Disconnected!” notification due to not

being able to reach its host. The torrents, however, assumed there were no peers

and sat idle. When the internet came back online, the VPN didn't auto‑reconnect (a

failure of the VPN client, perhaps?) but the torrents happily began seeding again,

this time uploading data in cleartext over a non‑encrypted connection.

At that moment, I realized something: what I just witnessed could

have been an intentional attack. Could rebooting modems be

something ISPs are doing to attempt to strip/disrupt constant streams

of encrypted/VPN transmissions? I've heard Comcast horror stories

about individuals having their internet shut off for merely using a VPN

or having “peer to peer” traffic flowing through their router.

Using the router/modem combo, my ISP

had provided opening me up for a myriad

of possible attacks and misconfigurations.

While I'm not 100% sure that what I

experienced was my ISP rebooting or

possibly updating my modem remotely, the

slim possibility that it was happening made

me realize the poor operational security I

was partaking in by utilizing their products

in my home.

While this article doesn't hope that

reading this has helped you consider what

devices you run in your home, along with

who can access them, update them, or

even possibly reboot them. Even something

as innocuous as a remote update and

reboot on a modem can do something as

extreme as stripping VPN traffic.

Oh, and pro‑tip: Most VPNs have a

configurable kill switch that will disable

your network adapter if the VPN client

disconnects. TURN IT ON!

*article is cross‑published from 2600

Her four walls are translucent, blood red, the colour of her crime. She
does not know her crime. She does not know who she is. She is
newborn.

She reaches out thin arms and soft hands and traces a crescent on the
glass alloy. Something in her bursts and she opens her mouth and
wails. The sound of her bounces off the wall alloy and presses against
her ears until she stops, sniffling, spitting up.
Empty space whorls in her head like a typhoon. She wants things to
flood in, experiences, memories, but she can't. She's walled in, can
barely move.

Beyond the alloy she sees a dark shape floating. She's upset that she
can't see it clear. She waves her tiny arms in dramatic circles.
二
Lusodos levitates using the reverse coreolis jetstreams of her skin
dress. Lifts a cup of hyper coffee with a hair‑tendril, sips it slow. She
has to make it last as long as possible. Aside from the sight of the new
born gasping and sobbing in confusion, it's all she'll experience this
cycle. And the next cycle, on and on.

Even though I'm paid, she thinks, I'm as much a prisoner as she is. But
my crime is not quantum murder. My crime is my class, my context, my
need to survive in a cold universe. As her hair‑tendril pushes the hyper‑
coffee down, she focuses her mono eye on it. Already age has begun to
show, the first pallid tinges of gray sickness. She thinks it's the hyper‑
coffee. No one knows hyper‑coffee makes you sicken faster, but she has
a gut feeling.

But without it she couldn't make it through a single cycle. She'd go
insane, smash through the alloy with metallic stiffened tendrils, choke
out the new born. A mercy for it and her.

Like so many before her, inevitable with the billions of fresh born and
billions of watchers. Losing themselves in the space of aeons.
By the time she leaves the prison nexus, she's shriveled and gray, and
no other Kle wants her. She's still holding a half full cup of hyper‑
coffee. She tilts the cup and watches the amber gold liquid spill over
the rim and splash on the crisscrossing lines of data that form the
beginnings of physical space. She expects it to burn the lines, but
hyper‑coffee isn't corrosive, and these lines haven't yet found the
potential to be destroyable matter. Stained, they still glow electric
green against the null void.

True space begins leagues ahead of her, cosmic dust beginning miles
beyond that. She feels weak, like she'll never make it. But the Kle lose
the ability to float last. Their brain holds onto it until the end. Her
childhood already lost in the slipstream of time, she thinks about when
she was a teenager, her hair tendrils not even wintergreen yet, but
burning teal.

She thinks about holding tendrils with her Boy‑Kle, feeling her skein
heart pulse under her skin beneath the spiderweb of stars. She thinks

Destiny 吉凶 Prosper Yamamoto

about piloting her first Aura, the blue bubble skimming above the fields
of Stolla XA3C, whipping the grass into a frenzy. She thinks about being
mind scanned by the telepath test‑drones, beeping out in concrete
binary that she had no future.

She wonders if she thinks hard enough at the intersection of reality and
potential, she'll slip back into her childhood's consciousness. Then she
could read one or two more books before the drones scan her, and see
if they find she can do anything else with her life but watch the quantum
murder babies.

But it's not regret she feels most. It's shame. She could never really
change who she was.

Even if she had no potentia, it didn't have to turn out like this. She
could have been locked in the prison nexus for infinity. It's not the
worst thing she can imagine. It's only the second worst.
The worst is that her true self, down deep, was always going to watch.
It was never going to kill. As her veins start to ache, her bloodflow
used to hyper‑coffee, Sluegelmue thinks of the new born's potential
self. That self is braver than she's ever been, and she'll know it, know it
whenever she thinks of the gray she'll always see in herself.
The new born will always be trapped beyond the alloy, but at least its
skin isn't gray.
三
She doesn't grow, because you can't grow outside of reality. You can't
grow because you are experiencing nothing, not even in the deep levels
of your psyche that measure time instead of sensory input. Decades
later, she waves her hand in front of her face and her fingers are still
stubby. She still cries. Her tears are endless.

Centuries later the shape beyond the alloy vanishes, and she feels its
absence as visceral sweetness. Only moments, but she remembers
them. Every second of her potentia life. At any second there's a
chance you won't deteriorate. That's all the prison nexus needs.
She can't feel her heart beating. She can't feel her blood pumping.
She has never blinked.

The blood red alloy is the blood that doesn't throw her, that sticks to
the insides of her veins. She has never seen it. She can never open
her skin, because her nails don't grow.

And then there is a new silhouette, a different shape. A pyramid,
jagged thorns spiking from its shadowed mass. It floats lower than the
last one did. It's heavier, she thinks. She wants to see clearer. But no
matter how hard she presses, she can't see through the alloy. She
beats her fists against it, but she can only beat soft, like someone
placing a hand on your shoulder, to let you know they want you to be
happy when you turn around and see them.
When she's tired of crying she gurgles and spits over herself. When
time takes that from her she cries again.

四
Cleaknor stares at the new born behind the blood red alloy. Thinks about the day the telepath
drones told him he had no future. Rage coursed through his pyramid, sloshing and boiling under
his tip. But he held it in check. Of course he did. If he couldn’t he would be one of those new
born flesh forms that mewl and howl beyond the blood glass.
They administered the sleep serum with a needle hard enough to pierce his carapace. The serum
soaking in his blood felt like prayer. When he woke again he was floating towards the blood red new
born.
The only action they punish is murder. Murder cannot exist even in punishment.
Cleaknor ponders his life. All he has known is punishment and abuse. His father floated near him
at malevolent angles, the harsh forms he drove into Cleaknor’s mind making his blood boil and
churn. No matter how much he begged, his father wouldn't stop.
But he had never given into the rage. He would never become like his father, full of hatred,
restrained just enough so that he wasn't quantum imprisoned, taken from space and time, vanished
breath and memory. Restrained just enough to hurt his child.

He never had a chance to turn out in any other way. Would always watch the new borns suffer and
cry. There was too much love in him. Too much love that stirred and pooled under his carapace.
The first three minutes are a drowning pool of self‑reflection. After three cycles he can't pay
attention to himself anymore. The new born consumes him.
He sees it beat its small fists helpless against the alloy. The alloy doesn't stain it the colour of its
crime. It only blankets it. Blankets, Cleaknor thinks, can be ripped away, leaving you bare.
Give your skin air to breathe, your thoughts space to fly away.

Not bare in the cold, but bare in the sun.
After three months Cleaknor makes his choice. He floats forward, veering to the alloy, accelerating
to top speed. Smashes into it. The alloy explodes, a shower of fragments and shards. The new born
gurgles as slivers lacerate her wrists and throat.
To live this long and not blink she must somehow know. This prison holds all realities in a death
grip. In some of them she's dying. In some Cleaknor is a murderer. It all dissolves like liquid glass
until the only thing you know for sure is that something is moving. Something out there moves us,
until we look through our eyes and all we see is a cage.
As glass rains around him Cleaknor sees the newborn's flesh through the storm. It is pallid, a
mottled gray. Frozen blood shines through broken skin, the colour of rubies.

Extracting Visual Novel Resources
petit-dejeuner

 A guide to ripping the files from ヤンデレな彼女に死ぬほど尽くされる.

 Maria is your childhood friend, a well‑behaved proper young lady.

 She dreams of marrying you, waking up to you, cooking your meals with love.

 But in reality she's an insane princess with insane emotions!

‑‑Game Description

Overview

This paper is a practical tutorial to reverse engineering a Visual Novel. Reverse engineering video

games is usually done to cheat, create mods, or defeat copy protections. Visual Novels are a type

of story driven game with light animation. If you haven't played one before, just imagine the dialog

in an RPG, but it goes on for the entire game with little or zero actual gameplay. Visual Novels are

unique in that they attempt to prevent the player from seeing all images, sounds, and scripts ahead

of time. Players must unlock the art assets by playing the game, and then later they can view the

assets in a gallery. Also, the visual novel in question is very much NSFW; you have been warned.

Unpacking

Unpacking the data from the game was pretty easy, since the game used a well known engine,

KiriKiri, and so had a standard resource file, XP3. I just ran arc̲unpacker, with the following

command:
 arc̲unpacker ‑‑dec=kirikiri/xp3 \

 ‑‑plugin=fsn \

 ‑‑out=C:\Users\Me\Desktop\dump data.xp3

 $ ls | head ‑5

 back̲base.png

 back̲base̲over.png

 back̲extra.png

 back̲gallery.png

 back̲load.png

Too bad none of the files could be opened.

Breaking Simple Crypto

Since the files weren't opening in any viewer, I tried using the 'file' command to see what was in

them. It couldn't recognize anything either. The file names weren't mangled, so I knew what the

files were supposed to be. For example, I knew 'nc001a.bmp' was supposed to be a BMP file and

'back̲title.png' was supposed to be a PNG. Below is part of my command history. The

'back̲load.png' file is obviously supposed to be a PNG, since it has the PNG file extension, but the

‘file’ command can't recognize the contents.

 $ file back̲load.png

 back̲load.png: data

Certain file types start with magic bytes to identify what type they are. I knew that PNG, Ogg, and

BMP files had unique magic bytes, so I tried comparing the expected bytes with provided bytes. I

used a '.ogg' file for my first test.

Every '.ogg' file starts with the ASCII characters 'OggS'. The first four bytes of 'bgm001.ogg' were

instead 'yQQe'. This was encouraging, since the same characters were repeated. 'OggS' has the

same two middle characters and so does 'yQQe'. This suggested that whatever change was being

Now the Ogg file was starting to look correct. Not

only were the magic bytes better, I could see

other valid strings in the hexdump. The file still

wouldn't open though. After playing with it for a

while I realized I was in over my head and

attempted the same process with a PNG file.

Getting a valid PNG

I attempted to map the same transform function

onto one of the PNG files. This fixed the magic

bytes and also made the rest of the data in the

hexdump look reasonable. I didn't even have to

change the number I was XOR'ing with.

I could open the PNG, but it didn't look right. At

the top was a single horizontal line of color, and

then the rest of the image was black with a trippy

skewed outline of the title screen. I was only able

to include a screenshot of the broken image in

this document. The actual broken image would

not paste correctly.

I thought that maybe something in the header

had been changed to mess up the image. After

poking at the image a bit, I noticed the

dimensions were sort of weird. The file was

801x600. Because 800x600 is a typical

resolution, I tried decrementing the width. It

worked.

Here's the character 'y' and the character 'O'

compared.1

 >>> "{0:08b}".format(0x79)

 '01111001'

 >>> "{0:08b}".format(ord('O'))

 '01001111'

I've marked below where the bits differ.

 '01111001'

 ̲̲XX̲XX̲

 '01001111'

Here's the character 'Q' and the character 'g'

compared.

 >>> "{0:08b}".format(0x51)

 '01010001'

 >>> "{0:08b}".format(ord('g'))

 '01100111'

I've marked below where the bits differ. You'll

notice the bits differ in the same place.

 '01010001'

 ̲̲XX̲XX̲

 '01100111'

Here's the character 'e' and the character 'S'

compared.

 >>> "{0:08b}".format(0x65)

 '01100101'

 >>> "{0:08b}".format(ord('S'))

 '01010011'

Once again, the same bits have been flipped.

 '01100101'

 '01010011'

 ̲̲XX̲XX̲

Flipping select bits would be possible by XOR'ing

a certain value. Since the changed bits are the

same every time, and the file seems to be

encrypted byte by byte, I should be able to just

XOR every byte in the file with the same number.

XOR'ing a byte with the same number twice gives

back the original value.

I mapped this function onto each byte of a file.2,3

 CONSTANT = int('00110110', 2)

 def transform(byte):

 'Transform a byte back to what it

originally was.'

 return byte ^ CONSTANT

Can't show that in
a Christian zine !

What are garbage collectors?
When writing code, the programmer manipulates data. This data is stored in
memory and, at some point, the programmer has to manage the memory they use.
They have two things to do: allocate and deallocate‐free‐memory. This is done
explicitly in languages such as C and C++.

However, many languages allow the programmer to allocate memory without
freeing it explicitly. For instance, in Java, when one wants to create a new object,
they have to use the keyword new but there is no keyword delete to free it. The
object is deallocated without the programmer being aware of it.

Such a mechanism actually emulates an infinite amount of main memory in the
computer. When the programmer allocates objects one after the other in Java and
does not bother to delete them, they act like they do not need to. This is the actual
purpose of a garbage collector, it enables the programmer to pretend they
have access to an infinite amount of memory and thus do not need to manage it at
all.

How to Collect Garbage
by Rukako

Obviously, one does not have infinite
memory and this mechanism is not
magic. If the programmer never frees
memory himself, the GC will do it for
them.

Mark & Sweep
This algorithm is a conservative GC. A
conservative GC frees block of memory
only if there is no more reference to that
block. It means that without a GC, no
variable could access the memory block
and it would result in a memory leak. The
main advantage of a conservative GC is
that it is absolutely impossible for an
object to be garbage collected while it is
still needed. However, it will hold every
objects that it is not 100% sure it is
allowed to dump.

As a conservative GC, Mark & Sweep
tracks every references in the program.
In order to do that, the compiler does
not directly use primitives such as
malloc but uses the functions provided
by the GC. It also never assign references
to other references directly, but lets the
GC handle the references. The GC has to
be aware of every references alive in the
program at each point of the execution.

The references that the GC stores are
local variables, static members of classes,
global variables and other data that are
accessible directly. These references are
called GC roots, they are the starting
point of the garbage collection process.

Since the GC knows each reference that
lives currently in the program, it can use
them to know which object are
reachable. Remember: once an object
becomes unreachable, it is considered
dead! Figure 1 represents both the set of
GC roots alive at the moment of the
program execution as well as a visual
representation of the objects allocated
and how they reference each others. For
instance, there is a variable r0 that
references the object Obj0 which holds
references to Obj1 and Obj2.

Mark & Sweep is a two‐step algorithm.
First, every object that can be reached
using a GC root is marked. Every object
that can be reached from an object
which is marked (an object's attributes
for instance) is also marked. At the end
of this process, literally every object that
can be reach directly (via a reference) or
indirectly (part of an object that can be
reached) is marked.

In figure 2, we can see that since r0 and
r1 reference Obj0, this object is
marked. Obj1 and Obj2 are marked too,
since they are referenced by Obj0.

Then, every object that is not marked is
freed. We know that every reachable
object is marked, so the objects that are
not marked are unreachable. This is why
they should all be deleted.

In figure 3, we can see that Obj4 and
Obj5 are missing. Since there were no
variable that could reach these objects,
they could not be marked and were freed.

Issues with Mark & Sweep
The Mark & Sweep is far from perfect. For example, it needs to traverse the whole
object graph each time the GC performs a collection. In very large applications, this
becomes a critical performance issue and makes this algorithm practically unusable.

Moreover, this algorithm cannot be used in multi‐threaded applications because it
would require both access to the GC‐root set, and object pool to be in critical
sections of code in order to ensure that allocations from multiple threads and
garbage collection does not corrupt the whole data structures. This requirement
further degrades the performance of the program.

Mark & Sweep alone also suffers from fragmentation. Indeed, when the objects
are allocated, they are put into a memory pool at a free location. When the memory
pool is full, a collection is performed to have place for new objects, but if the
collection does not permit to gain enough space, the memory pool is enlarged‐‐‐
more space is allocated, typically using algorithms like realloc. Unfortunately,
when objects are freed, they are not moved, leaving gaps in the memory pool. When
there are unused gaps in the memory pool, it is faster filled again. Thus, triggering
another collection and probably degrade the program's memory footprint.

Listing 1 is an example algorithm that allocates a new object using a given GC,
assuming that GcCollect does not enlarge the memory pool internally if needed.
The code is written in Pascal for extra sexiness.

Other Basic Algorithms

Mark & Copy is very similar to the
Mark & Sweep. It is also a two‐step
algorithm that first marks the reachable
objects and then performs the actual
garbage collection. However, unlike the
previous algorithm, this one does not
explicitely remove the unreachable
objects, it just moves the living objects
into a different memory pool and
considers the one currently in use
invalid.

Mark & Copy uses a big memory pool
that is twice as big as needed but uses
only half of it. Once this half is full, it
copies the reachable objects into the
other half of the memory pool and uses
it to allocate new objects. Once the
second half is full, it copies back the
living objects into the first half, etc...

When this algorithm copies the objects
from one half of the memory pool to the
other, it also compacts them, removing
the risk of fragmentation that occurs
using Mark & Sweep. Also, if the
memory space actually used by objects is
significantly less than the size of the
memory pool, it is possible to shrink it,
hence improve the memory footprint of
the program.

Unfortunately, the copy is a costly
operation. Thus, each collection is
incredibly slow and it gets worse with
the number of living objects.

Reference Counting is faster than
Mark & Sweep and Mark & Copy. A
reference‐counting (RC) algorithm just
keep a count of the living references to
an object‐‐‐whether it is a local variable,
an object attribute, etc‐‐‐and deletes an
object as soon as its count reaches 0
(there is no more references to the
object, so it is dead).

This algorithm has two major problems.
First, the objects are not compacted into
a memory pool and this leads to memory
fragmentation. Unlike Mark & Sweep,
it will not degrade the program's memory
footprint, however it may lead to a
suboptimal use of the cache and degrade
performance of the program.

Second, it keeps track of all references to
an object but does account for
reachability. For instance, if two objects
have a reference to each other but are
not accessible from outside, they will not
be freed because of these inner
references. RC is thus prone to memory
leaks if the programmer does not pay
attention to this‐‐‐which is unacceptable
since the GC is supposed to abstract
memory management, remember!

More Complex
Algorithms
Marking algorithms are not efficient and
scale poorly because the marking
process needs to check every references
in the program. In this section we will
see how to reduce the price of such a
costly operation using more complex
algorithms.

Generational Garbage Collector

Empirical studies showed that objects
die young. Indeed, about 80% of objects
freshly created will die in the next million
instructions. Consequently, it is very
interesting to collect young objects
frequently and let older objects alone for
a longer time.

This is the reason why generational GCs
were created. Such a GC uses different
memory pools to handle the objects and
each pool is managed with a different
collection algorithm. The youngest
objects go into the first pool, the largest
one. When a collection occurs in this
pool, the remaining objects are moved to
the next pool and so on.

As illustrated in Figure 4, the first pool is
the largest one, because most objects
die young. The size of the subsequent
pools decrease rapidly and only very old
objects reach the last generations.

Since the first generation may be large, a
very fast algorithm is needed to collect
garbage. Fortunately, it does not need to
be very precise since the next generation
can collect the remaining dead objects.
This the reason why a reference‐
counting algorithm may be a descent
choice for the first generation of a
generational GC.

The following generations do not have to
be as fast as the first one, since only
about 20% of objects are expected to
reach them. More precise algorithms
such as marking GCs are a better choice
here. A collect on an older generation
happens less frequently than a collect on
a younger one. However, when it
happens, it must collect from the current
generation and from the younger
generations. Which makes collection
from older generations proportionaly
more costly.

Train Algorithm

In order to reduce the price of collection
from older generations, it is possible to
use a better algorithm called the Train
Algorithm. The main advantage of this
algorithm is that it never needs to run a
complete marking of all the living
objects. It enhances the performance of
the "naive" generational garbage
collector.

The Train Algorithm organizes the
memory into many memory pools of
same size. The pools are called cars and
cars are organized into trains. There is no
limit to number of cars nor trains. The
trains, and cars in trains, are sorted
lexicographically. Figure 5 illustrates the
memory pool oragnization in trains.

Every car holds a list of every reference
to each object it contains, whether the
references come from other cars or

trains, or are GC roots.

In order to perform a
collection, the algorithm
takes the first car of the first
train. Every accessible
object is moved to another
car so that either the
current car is empty or
contains only unreachable
objects. In both cases, the
car can be safely removed.

Sometimes, the first train
may have no references
from other trains or GC
roots. That means the
train is only composed of
garbage that is kept alive
through circular references
from one car to the other. In
this case, the entire train
can be deleted at once.
Listing train‐collect is a minimalist and
high‐level implementation of the
collection procedure of the Train
Algorithm.

When the first train is deleted‐‐‐because
it is empty or composed of garbage‐‐‐the
second train becomes the first train and
will suffer from the same treatment as
the previous one. The goal of the train
algorithm is to delete as many trains as
possible, one after the other, to keep
only old and living objects.

This algorithm does not need to collect
everything at once and can only collect a
few cars at a time.

Concurrent and Parallel
Garbage Collectors

Nowadays, applications use multiple
threads to scale better and provide
better performance. While a great thing,
it complicates further the
implementation of garbage collectors.
Indeed, unlike with mono‐threaded
applications, stopping the world to run a
complete collection on a multi‐threaded
application degrades even further the
performance, because it does not
prevent only one thread from executing,
but all threads!

Hence, enabling the GC to perform
marking or collection tasks while the
program is still running is critical.
Moreover, if the GC is able to collect

garbage using itself multiple threads, it improves even more the collection time and
thus reduces the overhead of collection on the program's execution time.

Conclusion
Garbage collectors are interesting systems and their functioning is rich and varied.
Basic, yet precise, GCs can be implemented quite easily. Moreover more efficient
GCs can also be implemented with incrementally increased difficulty. The hobbyist is
able to discover this field at a reasonable pace.

Nonetheless, serious solutions require much more engineering to scale correctly
with contemporary needs in terms of performance and memory space. Multi‐
threaded‐‐‐and multi‐processor‐‐‐applications use a lot more memory than mono‐
threaded ones‐‐‐it can amount to several GCs. As a consequence they require an
even more aggressive garbage collector. Some state‐of‐the‐art garbage collectors
use machine learning to be able to delete a living object that will nonetheless never
be used again.

Also some GCs have been developed to be usable in real‐time environments,
allowing programmers to write software for critical real‐time applications using
more secure and comfortable languages than C.

