

For all the Lains out there,

issue 4 of the Lainzine.

Published using Scribus.

All fonts are free,

all image work GIMP,

all vector work Inkscape.

Supplimental image credits:

Lainchan.org

NASA/ESA

Wikipedia

Go FOSS and multiply...

by the people, for the people.

iiLainzine 4 – May 2017

C o n t e n t s

Lainzine
Issue 4
Published May 2017

Editor's Note 4
Chaos 5
Compiler Optimizations 15
Electric Defence 2 21
EM Spectrum 27
Hunter Eat Hunter 29
IRC Bot 31
Japan Mainland 37
Practical LSA Extraction and Use: An In Depth Guide 41
Private 45
Recomended Reading 47
Set Theory 49
Side Stepping Wifi Trials 53
Trip Report 55
Upgrading Physical Security Without Spending a Cent 59
Web scrapers, a guide and a horror story 61

COLOPHON
Created by the good people of Lainchan from all around the world.

Released in good faith and for free. All articles in the lainzine are reserved copyright to their respective creators.
all else is under the following license under the CC BY-SA 4.0 licence.

STAFF
Editors: Junk, bartholin, A731, Not Jesus, jove, whidgle, Eli Starchild, !TedDanson
Illustrators: Skolskoly, Lucas, torch, Tom Millicent, Dylan North, shmibs, Stopwatch, Nanashi
Typesetters: Skolskoly, ovibos, Tom Millicent, bartholin
Design & layout: Stopwatch
Cover/rear: Intron/Shmibs
Special thanks: lustycru, darkengine, Kalyx, Lui, kk7, tilde, Appleman1234, seph and You!

Our advanced apologies to anyone who would like to be credited, and didn't. If you feel like you have been
misrepresented, please contact junk0@openmailbox.org and we will do our best to fix the problem.

https://creativecommons.org/licenses/by-sa/4.0/

3 Lainzine 4 – May 2017

4Lainzine 4 – May 2017

Afternoon, morning, or another time.
Here's the fourth release of the lainzine, delivered exactly when I said
it would come out: Soon.

My excuse for a late release this time is a mix of work, school, and not
prioritizing lainchan as highly as I did when Kalyx was here. My work, I
should add, was direct engagement with the 2016 United States election.
The world is a very different place now and I hope that you are all safe
in the upcoming future.

Stay tuned for a zine (unaffiliated to us) that some lains are putting
together on opsec. Currently, they're looking for artists and formatters. If
you can help, feel free to get in touch with anontrust@cock.li `

6:10:1:14 6:12:4:26 57:3:4:2 56:4:6:1 61:11:2:23 60:3:2:13 60:1:5:12 58:1:3:2
31:8:1:22 29:1:1:7

--Junk

---end editor's note---

Stopwatch additional:

This issue is a full bumper packed 64 pages of Lain magic. Big thanks
for all contributions to the Lainzine content and construction. This edition
has been a long one in the making... As for the future of the zine, I intend
to continue working on its layout and with editorial help will be looking
for a release schedule somthing closer to tri-yearly, as opposed to the
current try-yearly. The zine is not dead!

As many will know, Lainchan has recently (*cough*) sold out...

I would like to thank Kalyx for all the work and time he spent
constructing this small corner of the internet and furnishing it so very well!
Obviously the sale and transfer of Lainchan raised questions about its
direction and future - but as it transpires, after the storm the sea is smooth.
The current owner of Lainchan is now Appleman1234 and it appears he
is not casual. Thanks for taking on Lainchan, and all the time you must
now spend adminin' it. You seem to be willing and well able to keep it
moving in a positive direction.

Now I present for your enjoyment in the following pages, Lainzine 4...

>Message ends.

E d i t o r ' s N o t e
By Junk / Stopwatch

5 Lainzine 4 – May 2017

C h a o s
By oceanhead

Summary
We study a simple system, called the Baker's Map, and we show that it

exhibits all the characteristics of a chaotic system. Symbolic dynamics for the
system will be constructed through the use of binary numbers. The system
will be used as a model of a chaotic dynamical system for future articles.

No prerequisites are needed other than highschool maths so all the
additional mathematical tools and ideas used will be constructed
throughout the article.

Sections:
1) Some Prerequisites
2) The Baker's Map
2.1) Presentation of the system
2.2) Symbolic Dynamics for the Baker's Map
2.3) Metric compatibility and the dense orbit

1) Some Prerequisites
What we want to do in this short series of articles is to show the

existence of a certain, very intresting behaviour in simple, abstract physical
systems. This behaviour is called chaos, and is not an exceptional
phenomenon: it is quite generic and we experience it in everyday life.

The context in which chaos fits best is called the theory of dynamical
systems. This theory is at the crossroad between maths and physics, the
discipline called mathematical physics. A dynamical system is the
abstraction of a physical system. A dynamical system is essentially made
of two parts, a set, called phase space or simply space, and a function,
called the dynamics, that associates a point in the space to another point
in the space. What we mean for space is allready a complicated matter,
and we won't dive into it. For what we need, it suffices to think of the
space X as a subset of space, X ⊂ ℝn. The dynamics is just a function
Φ: X → X. This function is called dynamics because we want to think
about it as a model of the motion of a particle: to do so, we think of a
point x in X as a particle, and of Φ(x) as the point in X to which x has
moved to after a fixed time. The whole motion is calculated applying
iteratively the dynamic map Φ. For this reason, a rule that associates an
“initial point” x to its transform after k units of time remains defined:

xk+1 = Φ(xk)

This means: chosen a time step t0 , the particle that was in xk at time
t = kt0 , will be at time of t = (k + 1)t0 in position xk+1 = Φ(xk). This also
means that if we want to know the position xk of a particle that starts its
motion in x0 after a time of t = kt0 , we need to apply Φ to x0 k times:

6Lainzine 4 – May 2017

xk = Φk(x0) where Φk = Φ◦ ... ◦Φ

So this is the picture: we take a point x ∊ X and we consider the subset

O(x) = {Φk(x), k ∊ ℤ} ⊂ X

called orbit of x, and we think of the integer k ∊ ℤ as a time unit. What
we want to do when analyzing a dynamical system is to describe
qualitatively what the dynamical map does to the points in phase space X.

2) The Baker's Map

2.1) Presentation of the system

We now concentrate on a single, simple dynamical system, called the
Baker's Map.

The phase space of the system is the square of unit lenght (with the
edges removed), X = [0, 1[2, which we will consider with cartesian
coordinates:

X = {(x, y) ∊ ℝ2 : 0 ≤ x < 1, 0 ≤ y < 1}

The dynamical map might seem a little complicated but with some
figures it can be explained very easily. This is its form:

Φ(x, y) = {
To visualize it, consider Figure 1. It is a plot of 50 000 random points

in X, centered in (1 , 1). Think of X as a square of something malleable,
like dough. The Baker's map does what a baker does when working
dough: you take the dough, you squash it down, you cut it in two and
you put a piece on top of the
other. If you are not convinced
that this is what the map does,
the figures will show you that this
is exactly its action.

Think of the black ball as a dot
of food coloring dabbed in the
middle of the dough.

FIGURE 1: A ball of radius 0.1 of 50 000

random points in X

}
k times

(2x, 1 y) if x < 1
2—

(2x, −1, 1 y + 1) if x ≥ 1
2— 2— 2—

2—

2— 2—

7 Lainzine 4 – May 2017

Note that the dot is exactly centerd in the square. This has
consequences on the speed with which the ball will be transformed,
because the map is piecewise: that is, it does different things left of x = 1

then it does right. In Figure 2 you can find a schematic drawing of the
action of the map on the phase space. The iterations of the Baker's map
on the initial ball can be found in Figure 3. Think of the dough being
squashed down untill it's twice as long and half as tall. Then it is cut in
two, and the two parts are stacked. If you keep this in mind, the first
iteration of the map will be clear to you: the ball is cut in two and half
as tall. Now let's take the resulting phase space and let's apply the
dynamics again, obtaining the second iteration. This time no part of the
black dot has x = 1 , so the cutting has no effect on it. The result is that
the black dot is only squashed, and it progressively gets longer and
closer to the middle. This goes on for a while, untill the two “limbs” are
squashed and elongated enough that a piece of them intersect the half.
We can jump to the fourth iteration, where a qualitative change ensues.
This is when the magic starts! The limbs get repeatedly cut and stacked
together, forming long and progressively finer filaments that, step by
step, cover the whole phase space, making the points sparcer and
sparcer. After 10 steps there is still a glimpse of regularity: we can still
distinguish the filaments. This form goes on for some time, depending on
the number of points that make the initial ball. The next steps make the
points limbs lose their structure, distributing the particles throughout the
dough. In this case, the phase space will go under another “transition”
after 10 steps, in which the filaments are completely disintegrated.

The ball structure is completely lost. The points from now on wander
around the dough, and no qualitative change ensues from now on. This is
the situation of iteration 20.

It is clear that something “chaotic” is going on: after some steps, any
“definite lump” in phase space will loose all its shape and will have its
points distributed throughout the phase space (this is why bakers use[1] the
baker's map to kneed dough: all the lumps get distributed in the dough
and after some steps the dough is allmost perfectly uniform). What we
want to show in the next section is that even if the system tends to rip up
and uniform shapes in phase space, it is deterministic.

2.2 Symbolic Dynamics for the Baker's Map

Let's focus on the action of the Baker's map on one point. Can we
predict where it will go after k iterations? The first idea is to take its
coordinates, apply the map, then plug the result in the map, and repeat
k times. This surely will show the point's coordinates after k iterations.
But this is not an intresting way to do it, because we would like to
predict without having to do all the calculations.

There is actually a way to predict the behaviour of one point's orbit,
more pre-cisely, there is a way to find a point that will spawn an orbit
that, iteration after it-eration, will pass infinitesimally close to points we
have chosen. To see this, we have to find smarter coor-dinates on phase
space that are adapted to the map's action, equivalently, coordinates in
which the map's action is extremely easy.

To do this, we must recognise what the map essentially does. As we
have said, apart from the cutting, the map stretches in one direction and
squashes in the other, and it does this by a factor of 2. Stretch-ing by a
factor of 2 is done by multiply-ing by 2, while squashing is done by divid-
ing by 2. So the essential part of the map a division by two in one

2—

2—

FIGURE 2: Scheme of the Baker's map's

action on a cat's paw.

8Lainzine 4 – May 2017

direction, and a multiplication in the other. This gives us an idea: in base 2,
multiplying by 2 is equivalent to adjoining a 0 at the end of the number,
equivalently, shifting towards the right the decimal point, while dividing by
2 is equivalent to shifting towards the left the decimal point. Thus if we
write the coordinates in X in binary notation we can capture the
stretching/squashing propriety of the map easily. This is actually an
intermediate step, because we need to take account of the “cutting in two”
part of the map. A deeper analysis of the map shows that the best co-
ordinates[2] possible are these: you take the binary expansion of the point
(x, y)

x = 0.a0a1a2 . . . y = 0.b0b1b2 . . .
where ak, bk ∊ {0, 1} ∀ k ∊ ℤ

FIGURE 3: Iterations of the Dynamical Map.

1

0.8

0.6

0.4

0.2

0

0 0.2 0.4 0.6 0.8 1

(a) First iteration

1

0.8

0.6

0.4

0.2

0

0 0.2 0.4 0.6 0.8 1

(b) Second iteration

1

0.8

0.6

0.4

0.2

0

0 0.2 0.4 0.6 0.8 1

(c) Fourth iteration

1

0.8

0.6

0.4

0.2

0

0 0.2 0.4 0.6 0.8 1

(d) Sixth iteration

1

0.8

0.6

0.4

0.2

0

0 0.2 0.4 0.6 0.8 1

(e) Tenth iteration

1

0.8

0.6

0.4

0.2

0

0 0.2 0.4 0.6 0.8 1

(f) Twentieth iteration

9 Lainzine 4 – May 2017

Note that these expansions are not necessarily finite, and if they are we
will think of them as infinite by adjoining an infinite sequence of zeroes, in
this way:

0.α0...αn = 0.α0...αn0000...

Then[3] you take the binary expansion of y, reverse it and “attach” it to
the binary expansion of x, this way:

x = 0.a0a1a2... y = 0.b0b1b2... ⟹
σ = ...σ–2σ–1.σ0σ1σ2⋯ = ...b2b1b0.a0a1a2...

So now, instead of phase space X and it's points we will consier the set

Σ = {σ = ...σ–1.σ0σ1 ⋯ : σk ∊ {0, 1} ∀k ∊ ℤ}

of double-infinite “strings”, or “words”, with “symbols”, or “letters”, in {0, 1}.
The corrispondance is one on one, because all we done is to find a
compact way to write a point in X, and it is actually a function

h : X ⟶ Σ
h(x, y) = ...σ–1.σ0...
where x = 0.σ0σ1... , y = 0.σ–1σ–2...

For example, lets consider the string associated to the point (1 , 0).
The binary expansion of 1 is 0.1, so h(1 , 0) = ...00.10...

Now we need to find a map Ψ : Σ → Σ that does what the
Baker's map does on X.

To do this we must understand what the binary expansion tells us
about the points in phase space. Lets focus on the x component. Any x
such that x < 1 will have binary expansion starting with 0, that is x =
0.0... , while any x such that x ≥ 1 will have binary expansion starting
with 1, x = 0.1... . This means that any point right of the center (1 , 1)
will be of the form ...σ–1.0σ1... and any point left of the center will be
of the form ...σ–1.1σ1... . The same thing can be said about the y
component, switching right with under and left with over. This means that
if we divide in four quadrants our X, the letters in position –1 and 0 tell
us in which quadrant the point is. This reasoning can be repeated with the
next two letters of the string, dividing each quadrant in additional four
quadrants, and so on: the letters in position k and –(k+1) tell us in which
square of a grid of 22k squares in X the point is. See figure 4. This is
essentially the meaning of a binary expansion, so it is nothing new but a
different point of view. So a string localizes a point in X with precision
growing with the number of letters of each string we consider. This will be
important for prooving some fun properties peculiar to the Baker's map.

Recall that the Baker's map is defined by

Φ(x, y) = {
We now proove that

if σ = h(x, y) then Ψ (σ) = σ´
where σ´k = σ´k+1

2—

2—

2—

2—

2— 2—

(2x, 1 y) if x < 1
2—

(2x, −1, 1 y + 1) if x ≥ 1
2— 2— 2—

2—

FIGURE 4 (pt1): Phase space partitions and

letters in strings.

2—

10Lainzine 4 – May 2017

that is, on the word set Σ the Baker's map acts as a translation
towards the right of the decimal point:

Ψ(...σ–1.σ0σ1...) = ...σ–1σ0.σ1σ2...

This is actually very easy to proove, infact, we allready prooved it. To
understand this lets concentrate on the points with x < 1 . Their associated
strings in word space are the strings of the form σ = ...σ–1.0σ1... . Since x
< 1 , the first part of the map applies, so x is multiplied by 2 and y is
divided by 2. Notice that since y < 1 after the division y´ < 1 . On string
space this means that σ´ = ...0.σ´0... . The value of σ´0 depends on if
x < 1 or not: since σ´0 tells us in which subquadrant of the first
quadrant of X the point is, and since the x-component of such point
comes from a multiplication by two, if σ1 was 0 now σ´0 is 0, and the
same with 1. To finish, note that if x ≥ 1 , then Ψ brings the 1 from x to
y. Thus σ´ = ...σ0.σ1σ2... . A straight forward calculation may be needed to
grasp this fact fully. You may try with the points (1 ,3) and (3 ,7).

This result may be summarized by the concise formula[4]

Ψ ∘ h = h ∘ Φ
These “coordinates” are called symbolic dynamics for the Baker's map,

because instead of looking at the evolution of the system in phase space,
from now on we will look at the evolution of strings in word space. This
may seem useless at first, but in this way we will proove important
properties of the system.

The first thing we will do is to use the symbolic dynamics to find points
that spawn predetermined orbits. Consider this (weaker) problem: we
want to find a point P = (x, y) in phase space that after k iterations of Φ
has x > 1 (or x ≤ 1). This is a very easy problem: since Ψ acts as
traslation of the decimal point on string space, every string σ that has
σk = 1 (or 0) will have its k-th iteration with the letter 1 right before
the decimal point, so it will certainly have x > 1 . Now, if we want to
have y > 1 too, then, for the same reasons, all strings with σk–1 = σk = 1
will have their k-th iteration as wanted, because Ψk(σ) = ...1:1... . The points
we are looking for are then simply P = h–1(σ). This reasoning can be
further extended to any finer partition of X in squares, in fact, if you find
a string σ with a block of 2s predetermined letters in it starting from
position k – s, then after k iterations of Ψ the string will have this block in
center position, divided by the decimal point, thus the point P = h–1(σ)
will be in the cell that is described by that block of letters.

The last generalization that can be made with the same reasoning is
that instead of considering only a fixed number of iterations k, we could
be intrested in points whose orbits “hop” in given squares of some partition
of X. This is now easy to construct: if the partition of X has squares with
sides of length 1 , all we have to do is to take a string that is in blocks of
2s letters that describe the wanted square, and let the Ψ map progress in
steps of s. Every anti-image P = h–1(σ) at these fixed steps of s iterations
will clearly be where we wanted it to be, realizing our intent. So if we
had fixed some points in phase space, then this point will have its orbit
pass as close as we want to these points, just choosing a fine partition of
phase space and letting the orbit go in squares that contain the fixed
points. This tells us a second meaning of the strings: they describe the
history of a given point.

There are two very important things to be noted: in the above
construction, if the point P = h–1(σ) were to be taken with a small
error, then after a few iterations the orbit would diverge from the one
predeter-mined by σ exponentially fast[5]. Somewhat similarly, if instead
of a point we take a few points condensed in a small square of our fine

2—

2—

2—

4—

2—

4— 4— 4— 8—

2— 2—

2—
2—

2s—

FIGURE 4 (pt2): Phase space partitions and

letters in strings.

11 Lainzine 4 – May 2017

[1] Actually, as far as I know, they use a

different map, that in jargon is called

Horseshoe map, in which the cutting is

replaced by folding in half. Their

behaviour is quite similar though, and

they are both chaotic.

[2] To be precise, what we are

considering is not a proper change of

coordinates, since we are not changing

the way we describe the phase space,

but we should think of it as a dynamical

conjugation, that is, we are looking for

an equivalent dynamical system, in a

certain sense. We will expand this point

of view further in the next article, when

we introduce the formal definition of a

dynamical system.

partition, then they will be scattered throughout the whole phase space, in
an uniform manner. These two considerations will motivate the definitions
of a dynamical system and a chaotic dynamical system.

2.3 Metric compatibi l ity and the dense orbit

What we want to analyze is the so-called metric structure of X and
Σ. A metric structure is, very informally, a way to mesure distances in a
space. A little more formally, a metric on a set Y is a function d : Y ×
Y → [0,+∞[satisfying some more or less obvious requisites:

d(Q, P) = 0 ⟺ Q = P
d(P, Q) = d(Q, P)
d(Q, R) ≤ d(Q, P) + d(P, R)

They mean: two points are distant 0 if and only if they are the same
point, distance does not depend on which point you compute it, and the
third is called “triangle inequality” and essentially it means that the length
of one side in a triangle is less than the sum of the length of the other
two. The last requisite is there to restrict the possible metrics to the
ones that are at least similar to the usual Euclidean metric defined by
Pythagoras' theorem (see below). The couple (Y, d) is called metric space.

In X there is an obvious metric: if P and Q are points, then we can
define the distance between P and Q this way

P = (xP , yP) Q = (xQ , yQ)

dX(P, Q) = (xQ – xP)2 + (yQ – yP)2

which is just the Euclidean length of the segment joining P and Q.
There also is a metric on Σ:

define δ(σi ,σ´j) =

then δΣ(σ ,σ´) =Σ2–|k|δ(σk, σ´k)

Since the sum is infinite, the 2–|k| term is there to make it converge,
that is, to have it return a finite number for every two strings in word
space. Ignoring the subleties, it is easy to see that such metric is well
defined and is a real metric. Its meaning is that two strings are closest
when they have the same symbols in the same positions (and so they
are the same string). The 2–|k| term also guarantees that the strings
that differ only on terms with large k are still close.

Thinking about the meaning of the strings, you can see that this is
a good thing.

}0 if σi = σ´j

1 if σi σ´j

k∊ℤ

Notes

“We are asking:

if ∃ ε > 0

such that

dX(P, Q) < ε

then ∃ δ > 0

such that

δΣ(h(P), h(Q)) < δ

The answer is no!”

12Lainzine 4 – May 2017

[4] This is what we called dynamical

conjugation earlier.

So (X; dX) and (Σ, dΣ) are two metric paces: does the symbolic dynamic

h : X → Σ

send close points in close strings? In mathematical terms, we are asking:

if ∃ ε > 0 such that dX(P, Q) < ε
then ∃ δ > 0 such that δΣ(h(P), h(Q)) < δ

The answer is no! As a matter of fact, the key is that we have
eliminated from Σ all the strings that end (or begin) with an infinite
succession of 1s, and that lets us get as close as we want to a point that
has no image in Σ. But all is not lost, because it is true if we substitute h
with h–1, and that is the “direction” we are intrested in, since we want to
proove things in string space and then transpose them in phase space.

The last thing we prove about the Baker's map is that there exists a
point that spawns an orbit with a peculiar metric property:

∃ P ∊ X such that ∀ R ∊ X ∃ Q ∊ (P)
and ∃ ε > 0 that satisfies dX(Q, R) < ε

That is, the orbit of P passes as close as we want to every point of X.
This is called a dense orbit. Another way of seeing this property is that if
we draw point after point of the orbit of P in X, we eventually[6] fill the
whole phase space without leaving any gaps.

As we have seen, the fruitful idea is to try to construct a string whose
image under h–1 has the metric property we are looking for. To do this,
note that given a generic string, if we truncate it left and right and we
append zeroes to it, we obtain another string that is close to the beginning
one, and we can decide how close such string is by deciding how many
letters we truncate from the initial string. Then we note that we can order
the set of such “finite” strings, for example in this way:

0 1 00 01 10 11 000 001 010 011 ...

Then we consider the string that is composed by an arbitrary semi-
string on the left and on the right all the set of finite strings written one
after the other, and the respective point in X:

σ = ...σ–2σ–1.0100011011000001010011 ...
P = h–1(σ)

We assert that this point's orbit is our dense orbit. Indeed, chose ε > 0
as small as you want, and let k ∊ ℤ be such that 2–k < ε. For every Q ∊
X, let τ = h(Q). The block τ–k ... τk–1 is certainly somewhere in σ, since it
contains all finite blocks of letters. Suppuse it is in between positions t–k
and t+k–1 for some t ∊ ℤ. Then after exactly t iterations of the dynamical
map the block will be centered around the decimal point in the iterate of
σ, and at that moment the iterate will be less than ε away from Q.[5] The exponential character comes

from the fact that every iteration

multiplies x by 2 and divides y by 2.

^
^

[6] after an infinite amount of time

[3] We should eliminate all the numbers

with an infinite sequence of ones at the

end, such that the change of

coordinates is bijective. This means that

if the expansion were decimal, we

would not distinguish between 1 and

0.9, which is a good thing.

^

-

13 Lainzine 4 – May 2017

WORLD L.S.D (in illustrations):

Tom Millicent

14Lainzine 4 – May 2017

15 Lainzine 4 – May 2017

C o m p i l e r
O p t i m i z a t i o n s
By Niles

1 Compiler Optimizations
The general idea of optimization is to replace code with more efficent

code that has the same end result.
The problem with this is that the ANSI C standard specifies that

the results of the new code have to match the original code in an
“abstract machine.” In an abstract machine, undefined behavior can
never happened.

Undefined behavior in the C standard consists of a “shall” or “shall not”
from the standard being violated, anything listed in the standard as
“undefined behavior” or anything not listed in the standard at all.

The general problem is that sometimes programmers rely on checking
for undefined behavior to make sure it has not happened. The compiler
assumes that this undefined behavior can never happend and simply
“optimizes” away the programmer's code.

2 Algebraic Simplif ication
Some example C code might look like this

char *ptr; // ptr to start of array
char *max; // ptr to end of array
size_t len;
// Other code
if (ptr + len > max)

return EINVAL;

This makes sense assuming normal values of len, however if len is
generated incorrectly or supplied by the user, the value of ptr + len
may overflow, causing ptr + len to be smaller than max and
allowing whoever controlls len to access arbitrary addresses in
memory beyond the end of the array.

The common resolution to this is to write something like this:

if (ptr + len < ptr || ptr + len > max)
return EINVAL;

Unfortunately, in this instance the compiler can apply algebraic simpli-
fication. When comparing P + V1 and P + V2 where P is the same
pointer and V1 and V2 are the same integer type, the compiler optimizes
it down to a comparison between V1 and V2. What this means for our
program is that our check, ptr + len <ptr could be rewritten as ptr + len
<ptr + 0, and that can be algebraicly simplified to len <0, which is
impossible because len is unsigned.

This means that to our compiler, ptr + len <ptr is dead code because it
will always return false, and gcc 4.3 with -O2 will “optimize” it away.

16Lainzine 4 – May 2017

C o m p i l e r
O p t i m i z a t i o n s
By Niles

The only way to mitigate this is to change the check to something like this

if (len > max - ptr)
return EINVAL;

3 Algebraic Simplif ication, cont.
Another example of algebraic simplification changing the result of code

might look like the following

int i = (x * 1000) / 2000

A compiler would usually optimize this to i = x / 2, however if x *
1000 were going to overflow, this does not do the same thing. For
example, if x were set to 1073742, then the non-optimized program would
set i to -2147483, however the optimized code would return the
mathematically correct value of 2147484.

4 Integer Overflow
Consider the code

int f() {
int i;
int j = 0;
for (i = 1; i > 0; i += i)

++j;
return j;

}
}

Eventually the loop will end because i will overflow, however as the
compiler says integer overflow is undefined behavior and can therefore
never happen, gcc 4.3.2 with -O2 “optimizes” this code to an infinite loop.

This type of check even exists in the GNU C Library, where the
implimentation of mktime will always return as if a time adjustment was
sucessful, even though the program has checks built in to return -1 if it
were to fail due to integer overflow.

5 Loop Hoisting
The compiler is allowed to pull partial (or even sometiles full)

statements from inside a loop to outside the loop. This is useful if you are,
for example, adding a complex numerical expression to a final result, but
the variables in the expression are not modified in the loop. In that case,
something like

17 Lainzine 4 – May 2017

for (int i = 0; i < 10; i++) {
total += a*x^15 % i;

}

may be optimized into the much faster code

int temp = a*x^15;
for (int i = 0; i < 10; i++) {

total += temp % i;
}

The unfortunate side effect of this is that it's not just pulling constant
expressions outside of loops, it can also rearrange the order of statements
inside a loop for optimal effcency. For example, in the following code

signed int si1 = atoi(argv[1]);
signed int si2 = atoi(argv[2]);
signed int result = 8;
size_t i;
puts("log message one.\n");
for (i = 0; i < MAX; ++i) {

puts("log message two.\n");
if (argc == 8) i++;
result += i + si1 % si2;
puts("log message three.\n");

}
printf("Result = %d.\n", result);

In this case, the program should print “log message one.,” then “log
message two.,” then fail due to a floating point exception. The optimized
program, however, only prints the first message before failing, leading to
some serious head-scratching debugging hell.

6 Clearning Sensit ive Memory
By far the largest optimization a compiler can make is dead code

removal. For example, a malloc call that creates an area of memory that
is then never used can be removed from the program before it is
compiled without any resulting changes. However, this is not always the
best option for security reasons. For example, if the user types a password
into the program, it needs to be stored in memory. After the password is
done being used, it should be overwritten with either null bytes or random
data so that when the memory is reallocated to another process later, the
second process cannot see the user's password. An example is shown in
the following code

void getPassword(void) {
char pwd[64];
if (GetPassword(pwd, sizeof(pwd))) {

/* check password */
}
memset(pwd, 0, sizeof(pwd));

}

18Lainzine 4 – May 2017

However, if this memory is never used after the call to memset, the
compiler can just regard the memset instruction as dead code and elade it.
This is an obvious security flaw, but there are several ways to mitigate it.
The first to be implimented was the Microsoft Visual C function
ZeroMemory().

However, it sometimes gets optimized out as well, so they added a
new function, SecureZeroMemory(), which the compiler is not allowed to
optimize out.

Another solution is to surround the code with #pragma directives, like this

void getPassword(void) {
char pwd[64];
if (GetPassword(pwd, sizeof(pwd))) {

/* check password */
}

#pragma optimize("", off)
memset(pwd, 0, sizeof(pwd));

#pragma optimize("", on)
}

The pragma directive is supported on some versions of Microsoft
Visual Studio and may be supported on other compilers.

Another common home-baked solution is an abuse of the volatile
keyword, like this.

memset(pwd, 0, sizeof(pwd));
(volatile char)pwd = *(volatile char*)pwd;

However, depending on the implimentation this sometimes zeroes the
whole buffer but sometimes zeroes only the first byte, leaving the
remainder intact.

The final solution is to write a secure memset function that uses the
volatile char trick across the whole buffer, something like this

void *secure_memset(void *v, int c, size_t n) {
volatile unsigned char *p = v;
while (n--)

*p++ = c;
return v;

}

The problem with this is that not all common compilers always respect
the volatile qualifier. On top of that, this prevents the code from being
optimized at all, as most compilers usually replace memset with a few
assembly instructions that are much more efficent.

19 Lainzine 4 – May 2017

7 The Volati le Qual if ier
Take the example code

volatile int buffer_ready;
char buffer[BUF_SIZE];
void buffer_init() {
for (size_t i = 0; i < BUF_SIZE; i++)

buffer[i] = 0;
buffer_ready = 1;

}

In this case, it would seem that buffer_ready should be immune from
common optimization problems. However, because the for loop does not
access any volatile locations or modify any related variables, the compiler
can move the buffer ready = 1; line above the loop, defeating the
developer's intent.

8 Optimizing for Embedded Systems
The following C code is a function that resets a watchdog timer in a

hypothetical embedded system

extern volatile int WATCHDOG;
void reset_watchdog() {

WATCHDOG = WATCHDOG; /* load, then store */
}

Regardless of the optimization level, a conforming compiler must
convert this to code that loads and then stores the watchdog register.

Recent versions of GCC for IA-32 emit this assembly code

reset_watchdog:
movl WATCHDOG, %eax
movl %eax, WATCHDOG
ret

However, the latest version of GCCs port to the MSP430
microcontroller compiles the code into the following assembly:

reset_watchdog:
ret

Thus the compiler's optimizations prevent the timer from being reset.

20Lainzine 4 – May 2017

9 Null-pointer Checks
gcc deletes null-pointer checks beyond the first use of a pointer at

optimization level two or higher

void bad_code(void *a) {
int *b = a;
int c = *b;
static int d;

if (b) {
d = c;

}
}

On the third line of code, we set c = *b. gcc assumes that this would
trigger a hardware fault if b is zero, so therefor b cannot be zero.

This causes gcc to completley eliminate the check if (b) later in the file,
so d = c is always run.

This can be seen in linux kernel 2.6.30

struct sock *sk = tun->sk; // sk initialized to tun->sk// ...
if (!tun) return POLLERR;

This code will never return POLLERR because it is assumed that tun
cannot be zero. This could be locally exploted by mapping page zero with
mmap() then triggering the bug in the process's context, creating an
execution jump to attacker-controlled data.

This was fixed in kernel version 2.6.23 by moving the definition of sk
down to below the if statement.

10 That 's All , Folks
This has been a summary of Dangerous Optimizations and the Loss of

Causality, a lecture given in 2010 by Professor Robert C. Seacord at
Carnegie Mellon, CS 15-392.

21 Lainzine 4 – May 2017

E l e c t r i c D e f e n s e 2
By Victor

Electric weapons 101
In a world ruled by electricity, taking advantage of its power can

determine the fate of an individual, either by using it to run computers and
sophisticated devices in order to gain advantage over your adversaries or
simply using its raw power in an offensive way. Nowadays, when nearly
every device and home appliance has its own electric circuit, it doesn’t take
much skill to turn inoffensive circuits into dangerous electric weapons.

Electric weapons haven’t changed much since they were devised, the
main principle of operation behind all of them is to create an electric
potential high enough so current can flow inside the body, overflowing
the nervous system with electric signals in an extremely painful way,
losing control over the muscles, causing them to contract and leaving the
subject incapable of fighting back even after the discharge has ceased
due to the muscles needing some time to recover.

These electric weapons have many advantages, since they usually
aren’t lethal, leave little to no evidence after having been used and just
require a slight contact with the subject in order to do their job, a good
tool to have to get out of a threatening situation without any further
consequences.

Understanding how they work
One of the most important equations in electronics is voltage equals

current times resistance. Now, for our electric weapon we need a lot of
voltage, enough so electrons want to fly off the electrodes, enter the body
of our attacker and be sucked again into the circuit, if we increase the
voltage we’ll decrease the output current, that means we’ll need a
considerable amount of input current to start with, 9v alkaline batteries are
not the best choice, Ni-Mh batteries are better, but they can’t come close
to lithium batteries in terms of current delivery and energy density, but we
would need at least three of them in series to get a nice input voltage to
start with. For practical reasons I’ll use a 9V Ni-Mh battery, although
lithium battery packs are advised.

Now we need to find a way to turn those 9 volts into 10000 volts at
least, that will give us around 1Cm spark, enough to jump through clothes
directly into the body, although our final voltage will probably be around
15000 volts. One of the best and simplest ways to increase a voltage is
to use magnetism, this is, temporarily storing electric energy into magnetic
energy, only to be converted back again with a much higher potential,
but lower current. We will rely on the basic laws of magnetism, which
state any change in magnetic field passing through a loop of wire will
create an electric potential, this potential is directly related to the number
of turns in the loop, the higher this number is, the higher the voltage will
be.

To put these laws in practice we’ll use a flyback transformer. Flyback
transformers consist of two coils, a primary and a secondary, wound

22Lainzine 4 – May 2017

around a ferrite core. This ferrite core stores the magnetic field created by
the primary and when it collapses it gets transformed into a higher
voltage by the secondary. According to the magnetism laws mentioned
before, the ratio of turns of copper wire must be very high, around 1:100
or higher, in order to produce high voltages. A 555 timer will provide the
electric pulses needed to alternate the magnetic field.

To further amplify the voltage a Cockcroft-Walton multiplier is used at
the output of the transformer, this simple circuit relies on capacitors, which
store electric charges and allow AC current to pass, and diodes, which act
like check valves, only allowing the charges to travel forward, in
combination the potential is increased while the current diminishes at each
stage.

Getting started
After the concepts are clear we can start building our electric weapon

or stun gun. We’ll start by gathering all our electronic components, an
electronic “junk box” can help in some cases.

Parts needed
• Some broken CFL bulbs
• 555 timer chip
• 220-470uF 25volt capacitor
• 10uF 25 volt capacitor
• 1uF 25 volt capacitor
• 5.6nF capacitor (film or ceramic)
• Switch (flush preferred)
• Pushbutton
• Battery connector
• MOSFET of choice (IRF540)
• 10k Potentiometer
• 470R, 2x330R, 10R Resistors
• 20x UF4007 or BA159 diodes (or any fast recovery diode) you

can also use 10x 2-3 kV rated
• 10x 1nF 3kV capacitors
• 2x Screws, nuts and locking washers
• Plastic box or case (non metallic)

Tools needed
• Soldering iron
• Drill

23 Lainzine 4 – May 2017

Construction
The flyback driver board is assembled first, follow the circuit diagram

to assemble it, to avoid voltage spikes caused by the discharges of the stun
gun make traces as short as possible, wire bridges if any should be flush
with the board and must be as short as possible, use copper clad boards
or prototype boards with appropriate trace width for high current sections.
Build the multiplier on a different board. If you’re unsure about how to
connect the multiplier to the transformer at the driver board you can
connect a neon bulb to the output of the transformer and power the
driver, the electrode with a brighter glow around it will be the negative
and it will be connected to the negative of the multiplier, the dimmer one
will be the positive.

To make the flyback transformer, a transformer from a fairly big CFL
PSU is desoldered, after removing the protective tape, the ferrite core is
evenly heated up with a small torch until the glue holding it together melts,
the two “E” parts of the core are extracted with the help of some pliers.
Now the windings are exposed, snip the wire and begin pulling it out until
there’s nothing left but the plastic to hold a new winding, clean glue
residues with alcohol. Tightly wind around 20 turns of ~24 AWG
enameled wire to create the primary, for the secondary I used a very thin
enameled wire, around 35 AWG as calculated according to its resistance
per meter, wind as many turns as necessary to fill the transformer, probably
around 1000 turns in this case. Solder the ends of each coil to a lead at the
base of the transformer. To finish it all, dip the transformer in hot wax,
waiting around half a minute so it can get between the windings. Some
kind of cyanoacrylate glue could work too, although this isn’t necessary it
gives me more confidence, as in many occasions I could smell ozone being
generated by the transformer, probably indicating a short.

To make the multiplier a perforated board without pads can be used,
assemble the circuit keeping clearances in mind, when soldering and
trimming the leads avoid pointy ends, as electrons like to jump off them,

CFL power supply with desired transformer.

24Lainzine 4 – May 2017

this effect is known as corona discharge. Leave at least 5mm between
the capacitor leads, using a padded perfboard is not advised as the
copper pads make it difficult to respect the clearances. In this case 1nF
capacitors rated 3 kilovolts have been used in conjunction with BA159
diodes, as it can be seen, 20 diodes have been used, this is because the
output voltage of the transformer can get up to 2 kilovolts, instead of
ordering 2kv rated diodes, 2 diodes in series capable of 1kv reverse
voltage each will work just fine.

Laying the circuit inside the case is also important, try to maintain a
distance between the high voltage multiplier and low voltage
components. Holes for the switch and pushbutton are made in
convenient locations, they are placed and soldered to the circuit, use
plenty of shrink tube and electrical tape in case of doubt. Double sided
tape or hot glue can be used to hold the boards in place and packing
foam to separate them. To make the output contacts two holes are
made through one extreme and two bolts are inserted with their nuts
and locking washers, clamping the exposed output wires in between,
some sheet metal from a tin can is used to make the spark gap, which
in this case is 1.3Cm apart, experimenting with different configurations is
encouraged, as arcing is kind of unpredictable. As an optional
improvement, a capacitor can be connected between the output
terminals, this will create beefier sparks that will pack a bigger punch,
the capacitors should be rated for 15 to 20kV, this can make them
harder to find. Their capacitance value will vary depending on the space
left in each case, as these capacitors tend to be quite big.

The trigger will be a pushbutton that will connect the battery to the 555
and flyback transformer, avoid using pin 4 of the 555 as the trigger, as the
voltage spikes will affect the performance of the circuit. As a measure of
safety to avoid accidentally turning on the device, a switch is installed. Both
the switch and the pushbutton should be rated for at least 3 amps.

To adjust the stun gun open the case and hold it into the air, as
leaving it on a desk or any other surface while performing this operation
would include parasitic capacitances that will affect the correct
adjustment, with the pushbutton constantly pressed adjust the
potentiometer with a screwdriver until the rate at which sparks occur is
higher. Adjust the spark gap to the widest possible and repeat the
operation until it can’t be further optimized.

Electric noise: a stun gun is probably one of the worst environments
for a circuit to work, high current and high voltage pulses produced by
the arc and the transformer induce voltage spikes inside the circuit, a
couple of capacitors between power and ground to filter these spikes is
fundamental but this doesn’t completely solves the issue, insulating the
555 driver using a faraday cage made with conductive paint or HVAC
foil tape could be a simple solution.

Other uses: The electric disturbances produced by this device can be
strong enough to alter the normal operation of other electronic devices or
even destroy them, operating the stun gun at a distance closer than 2cms
from a circuit board will probably crash or brick it, although at this point one
might just zap it if the intention is to destroy it, adding a coil to the output
of the stun gun with a small spark gap will amplify this effect, allowing you
to mess with circuit boards locked behind a plastic casing, this won’t work
with metal cases as they will absorb the energy produced by the magnetic
field before it reaches the circuit.

Other ways of making a stun gun: One of the most used stun gun
circuits uses a pulse trigger transformer, these transformers are hard to
make and require isolating the coils with resin and purging the air to
avoid shorts at the secondary. Both circuits are similar, the difference being

25 Lainzine 4 – May 2017

the stun gun described here converts the voltage coming out of the first
transformer using a Cockcroft-Walton multiplier, which is far easier to
make from common components, while the standard one stores the
output in a capacitor to discharge it though this second transformer,
further amplifying it.

This same 555 driver circuit can be used without many modifications
with bigger transformers, for example, to make electric fences.

Troubleshooting
• It just doesn’t works:
Check the battery is fresh, recheck connections, make sure the 555

timer works.

• 555 and MOSFET are working but there’s no output.
Check the transformer is connected, check the output of the

transformer with a neon bulb, if it doesn’t glows despite current flowing
through the primary it is shorted or there is a problem with it. Check the
transformer has been connected properly to the multiplier, pay attention to
the polarity.

• MOSFET/Transformer are overheating
Very low primary impedance, increase turns at the primary or

increase frequency. Check gate of the MOSFET, there should be a
square wave there.

• It was working but now the output has dropped a lot.
Check diodes on the multiplier with an ohmmeter in the megaohms

range, any diode with low or different reverse values than a new one is
fried. Capacitors are not likely to fail, but they can be tested too. If
diodes fry often, the output of the transformer is too high, decrease the
number of turns at the secondary or increase the rating of the
diodes/put another diode in series. If you smell ozone/burning near the
transformer it might be shorted. Test it in the dark to check for
unwanted arcing or corona discharge.

(1) Switch

(2) Pushbutton

(3) Battery

(4) 555 driver

(5) Adjust potentiometer

(6) Flyback ransformer

(7) MOSFET or high power transistor

(8) Main capacitor

(8) Main capacitor (470uF)

(9) Noise filter capacitors (10 and 1uF)

(10) Multiplier board

(11) Spark gap

(12) Output terminals

(13) Rubber isolation

(14) Optional output capacitor

26Lainzine 4 – May 2017

E M S p e c t r u m
By JS

Electro Magnetic Spectrum

27 Lainzine 4 – Sept 2016

Diagram 2 from a series of x. Resurch and layout: JS

28Lainzine 4 – Sept 2016

29 Lainzine 4 – May 2017

H u n t e r E a t H u n t e r
By nul lmuse

What story should I tel l you, lainon?
A true one:

chattr +i ./*

And then I begin my collection. I can imagine his face, see the glint of
cold sweat breaking out on his brow. He moves to stop me, to attempt
damage control.

rm: cannot remove 'svchost.exe': operation not permitted
rm: cannot remove 'xiao': operation not permitted
rm: cannot remove 'xynsyn': operation not permitted

On and on. My scp command continues, pulling their entire toolkit home
with me. I watch carefully, spamming processlist checks in a separate
window. What is he doing? Where will his panic lead him next? Will he
disconnect me before I grab every RAT and exploit in their bag?

He doesn't. I get away with everything. I fire off a recursive sed,
bestowing amnesia upon every log file that ever heard of my IP address,
and then kill -9 $$. My trace disappears, and I return home with my cargo.

I run honeypots for a hobby. Sometimes I hack back. This time around
a target from China was setting up one of my pots as an exploit kit
server. I watched carefully, monitoring his actions closely. I often assume
the persona of the trapdoor spider – sensing the vibrations of a cricket
mere inches above me. Monitoring, waiting.

Upgrading my server. Installing nginix. Modifying PHP scripts.

Then he creates a backdoor. A useradd command flashes past my
terminal. A password.

30Lainzine 4 – May 2017

A thought passes: Is this stranger stupid enough to reuse passwords?
I connect to a Ukrainian hop point, and then ssh to the intruder.

user: root
password: hu@ng!!23

A pound sign greets me and I laugh. id. uname -a. ps -eaf. netstat
-tunalp. ls -la.

A massive directory structure rises to meet me. Dozens of tools scroll
past my screen -- RATs, exploits, trojans, rootkits. Linux, Windows, Mac,
Mikrotik. Food for reversing. A veritable goldmine for new techniques and
adversary tactics.

id. Someone else is here.

I wonder what I would do in his situation, if he saw me? Delete
everything. Disconnect the attacker. I cannot control the later, so I
recursively immortalize everything I see, and start grabbing. My adversary
panics, a wonderful emotion, and I get away.

So here I am, tearing through Chinese malware with edb, vivisect, and
bokken. These guys are good. Listening Post obfuscation, only discoverable
through late nights staring at assembly. One RAT silences itself the
moment Wireshark enters the process list. Rootkits modifying kmem. Flash
exploits. Unknown ones.

I run honeypots. I like to catch the bad guys. But I don't do it for the
good guys. I just like to stay current.

31 Lainzine 4 – May 2017

I R C b o t
By Gitgood

Writing an IRC bot in Python (3.5)

May 6, 2016

Abstract

This article will hopefully introduce the reader to IRC, basic sockets
programming in Python and general IRC bot creation. IRC has been an
incredibly popular and prominent mode of communication in the
cyberpunk/programming/tech literate communities from the early 90's,
and because of this many great communities have and continue to flourish
and mature on these networks. Because of the simplistic nature of IRC, the
creation of “bots” that can provide useful functions in IRC channels is
surprisingly trivial and easy to pick up. Also, I am aware the code
formatting is less than perfect so if you just want to grab the code, here's
a link: http://pastie.org/10826422

What is IRC? Why would you need a bot?

What is IRC?

Developed in late 1988, IRC stands for “Internet Relay Chat” and is a
massively popular communication platform.

IRC lets users connect to a server and communicate with other
connected users (usually through some IRC client) in real time, even
allowing the transfer of files. IRCP (Internet Relay Chat Protocol) is the
application layer protocol which helps facilitate the communication of these
IRC clients.

When connected to an IRC server, a user can issue various different
commands. A few examples of these are:

Command What is does
/away MESSAGE Leaves a message explaining why you're away.
/help Displays a list of all commands.
/join CHANNEL Joins #channel
/message USER Sends message to USER
/nick NICKNAME Sets user's nickname to NICKNAME[6]

Once connected to a server, a user still needs to join a channel before
they can begin chatting. Channels can be described as chatrooms that
people can join and leave at will. So, for example, if a user wants to
connect to freenode's #python channel they would first join irc.freenode.net
using their IRC client and after all the MOTD (Message of the day) text
would type /join #python. From here the user is free to chat away to the
other users connected to #python. IRC gained massive popularity in the
90's in the programming/hacking/technology-literate subcultures. “In the
autumn year 2000, EFnet has some 50,000 users and IRCnet
70,000.”[5] As it stands today, the largest IRC networks currently are:

LAINCHAN IRC
Total IRC abuse.

http://pastie.org/10826422

32Lainzine 4 – May 2017

• IRCnet - 38716 users.
• QuakeNet - 34879 users.
• EFnet - 22790 users.
• Rizon - 21030 users.[2]

Because of the massive popularity of IRC, if you have an interest then
chances are there is a community for it.

Bots? Why?

IRC itself is fairly simple and as a result doesn't come jam packed with
features. People found that due to the simplistic nature of IRC, computer
programs could easily be written to provide certain features that IRC lacks.
For example, a bot could be written to emulate a magic 8-ball. It would
listen on a channel for a command such as “!8ball [QUESTION]”, and
once found would choose a random 8-ball phrase and send it back to the
chat. It would look something like:

<gitgood> !8ball will I die soon?
<8ballbot> Without a doubt.
<gitgood> damn.

This, of course, is a very simple example but you get the gist. This is
the bot we are going to be writing.

Writing the IRC bot

Now that the basics of IRC is out of the way, we can now get to
implementing the bot.

Setting up the bot
As mentioned previously, we're going to be writing this magic 8ball

bot in Python 3.5 so some Python experience is suggested. Firstly, we need
to import two modules. These are “socket” and “random”. The socket
module will provide us with network communication, and the random
module will be used to select a random magic 8ball phrase. If you don't
know much about sockets, I suggest reading:

• import socket
• import random

After this we're going to need the magic 8-ball phrases in a list. Then,
when the time comes, we can choose a random phrase from the list.
Magic 8-balls typically have 20 standard phrases. 10 of these phrases are
positive (Yes), 5 of these are neutral (Ask again later) and the remaining
5 are negative (My sources say no). Here is the finished list:

33 Lainzine 4 – May 2017

phrases = [
"It is certain.", #First ten phrases are "positive"
"It is decidedly so.",
"Without a doubt.",
"Yes, definitely.",
"You may rely on it.",
"As I see it, yes.",
"Most likely.",
"Outlook good.",
"Yes.",
"Signs point to yes.",
"Reply hazy, try again.", #Five "neutral" phrases.
"Ask again later.",
"Better not tell you now.",
"Cannot predict now.",
"Concentrate and ask again.",
"Don't count on it.", #Five "negative" phrases.
"My reply is no.",
"My sources say no.",
"Outlook not so good.",
"Very doubtful."

]

Now that the phrases array has been made, we need to create some
variables to store the IRC server, channel and bot nickname.

server = "irc.freenode.net"
channel = "#8ballbottest"
nickname = "magicbottest"

The next thing that needs to be done is the creation of the socket instance,
the connection to the IRC server and the sending of some initial information.

irc = socket.socket(socket.AF_INET, socket.SOCK_STREAM).

irc.connect((server, 6667))
irc.send(("USER " + nickname + " " + nickname + " " + nickname + "

:Magicbot\r\n").encode(encoding="UTF-8"))
irc.send(("NICK " + nickname +"\r\n").encode(encoding="UTF-8"))
irc.send(("JOIN " + channel +"\r\n").encode(encoding="UTF-8"))

The first line creates a socket instance with two parameters. The first
parameter is socket.AF_INET, and this refers to the IPv4 address family.
The second parameter is socket.SOCK_STREAM, and this "Provides
sequenced, reliable, two-way, connection-based byte streams."[3]

The next line uses the socket to connect to the freenode server on port
6667. “The well known TCP port for IRC traffic is 6667”[4]

After connecting to the server there are three lines that are for sending
data to the server. The first line sends the USER command in the format:

USER username hostname servername :realname

MICROSOFT MALWARE PROTECTION CENTER

“No one could have anticipated all the ways

that Internet Relay Chat (IRC) would eventually

be used when it was ‘created’ in Finland

during the late 1980s. People really started

picking up on IRC in the early 1990s.”

34Lainzine 4 – May 2017

"The username is the user part in your user@host hostmask that
appears on IRC, which shows where your connection comes from. The
realname is used to populate the real name field that appears when
someone uses the WHOIS command on your nick."[1]

Making the bot respond

Now that the bot has connected to the IRC server and joined the
channel, it now needs a way of getting information from the channel and
parsing that for use. Fortunately, this is very easy too.

while True:
#Recieve data from the socket, and decode it.
recieved = irc.recv(2048).decode("UTF-8")
print(recieved)
#print(bytes(recieved, "UTF-8"))
#If the server sends a PING.
if recieved.startswith("PING"):

#Respond with a PONG to prevent timing out.
irc.send(("PONG " + recieved.split()[1] +

"\r\n").encode())
print("Ponged")

if ":!8ball" in recieved:
#Splits the recieved response in to a list with two

elements. [0] is what was before the !8ball, and [1] is what was after.
#It then gets what was after "!8ball", and calls .strip()

on this string to remove any trailing whitespace characters
#such as "\r" and "\n"
question = recieved.split(":!8ball")[1].strip()
#If there has been a statement after !8ball such as

"!8ball am I going to die?"
if question != "":

#Then send a a random phrase from the
phrases array to the channel.

irc.send(("PRIVMSG " + channel + " :" +
random.choice(phrases) + " \r\n").encode())

Everything is in an infinite loop as we always want to be recieving
data and parsing it. We recieve at most 2048 bytes from the connection,
and then decode it to UTF-8. After decoding the recieved data we then
print it. Errors may occur here if the channel the IRC bot is joining has
Unicode characters in it. If so, just uncomment the next line instead. To
ensure that the client hasn't timed out, the server will ocassionally "PING"
the client. When a message that starts with "PING" is found, then we send
back the appropriate "PONG" to let the server know we're still connected.
If "!8ball" is in the recieved data, then we can assume someone has tried
to summon the magic 8ball bot. We then get the text after "!8ball". If the
question is equal to "", then no question has been asked after "!8ball" and
therefor no response should be given. If there is a message after "!8ball",
then send a random choice from the phrases array to the IRC channel.

IRC USAGE

Peaking in 2005 with a total of around

450,000 users across the top 6 IRC networks,

falling to approximately 300,000 by 2012.

Freenode being the only network enjoying a

sustained increase in user base.

35 Lainzine 4 – May 2017

Complete code:

import socket
import random

phrases = [
"It is certain.", #First ten phrases are "positive"
"It is decidedly so.",
"Without a doubt.",
"Yes, definitely.",
"You may rely on it.",
"As I see it, yes.",
"Most likely.",
"Outlook good.",
"Yes.",
"Signs point to yes.",
"Reply hazy, try again.", #Five "neutral" phrases.
"Ask again later.",
"Better not tell you now.",
"Cannot predict now.",
"Concentrate and ask again.",
"Don't count on it.", #Five "negative" phrases.
"My reply is no.",
"My sources say no.",
"Outlook not so good.",
"Very doubtful."

]

server = "irc.freenode.net" #We"re connecting to the freenode IRC server.
channel = "#8ballbottest" #A (probably) empty channel for testing the bot.
nickname = "magicbottest" #The nickname of the bot.

irc = socket.socket(socket.AF_INET, socket.SOCK_STREAM) #Create
a socket instance.

irc.connect((server, 6667))
irc.send(("USER " + nickname + " " + nickname + " " + nickname + "
:Magicbot\r\n").encode(encoding="UTF-8"))
irc.send(("NICK " + nickname +"\r\n").encode(encoding="UTF-8"))
irc.send(("JOIN " + channel +"\r\n").encode(encoding="UTF-8"))

#Infinite loop.
while True:

#Recieve data from the socket, and decode it.
recieved = irc.recv(2048).decode("UTF-8")

References

[1] Caf. What is the difference between the

nick, username, and real name in irc, and

what is the password?

http://stackoverflow.com/questions/31666247/

whatisthedifferencebetweenthenick

usernameandrealnameinircandwha, 2016.

[2] A. Gelhausen. Irc networks top 100.

http://irc.netsplit.de/networks/top100.php,

2016.

[3] M. Kerrisk. Socket(2) linux programmer's

manual. http://man7.org/linux/man

pages/man2/socket.2.html, 2015.

36Lainzine 4 – May 2017

print(recieved)
#print(bytes(recieved, "UTF-8"))
#If the server sends a PING.
if recieved.startswith("PING"):

#Respond with a PONG to prevent timing out.
irc.send(("PONG " + recieved.split()[1] + "\r\n").encode())
print("Ponged")

if ":!8ball" in recieved:
#Splits the recieved response in to a list with two elements. [0]

is what was before the !8ball, and [1] is what was after.
#It then gets what was after "!8ball", and calls .strip() on this

string to remove any trailing whitespace characters
#such as "\r" and "\n"
question = recieved.split(":!8ball")[1].strip()
#If there has been a statement after !8ball such as "!8ball am I

going to die?"
if question != "":

#Then send a a random phrase from the phrases array to the channel.
irc.send(("PRIVMSG " + channel + " :" +

random.choice(phrases) + " \r\n").encode())

How else can they be used?
I'm glad you asked! One very malicious use for IRC bots is the

commanding of *botnets*. As you probably know,
botnets are a large network of infected "zombie" computers that can

be controlled (often maliciously). For instance,
say you've a network of 10000 bots, and you command them to

spam a webhost with requests then that could possibly take
that server offline (depending on how large they are).

How would you command this server? You could directly send the
command to each and every "zombie", but that doesn't seem very
efficient. What you *could* do however, is include some IRC bot code not
unlike the code we wrote previously so that when a computer is infected
the virus automatically connects to a certain server/channel. Once it has
connected, it can then listen for commands. An example might be:

<1337man> !ddos https://www.volafile.io

Each one of these infected computers would see this command, and
then execute some function that would flood the link with requests.

[4] L. MikeDuigou. Internet relay chat (irc).

https://wiki.wireshark.org/IRC, 2008.

[5] D. Stenberg. History of irc (internet relay

chat). https://daniel.haxx.se/irchistory.html,

2011.

[6] Unknown. Irc information....

http://www.ircbeginner.com/ircinfo/ircc

commands.html, 2013.

J a p a n M a i n l a n d
By Tom Mil l icent

Japan
As a part of the replication process I was given access to this information.
I was getting so tired of having to fill those boxes ~ there was no way

I'd meet this month's quota. I'd run into a bit of a situation with my
teacher, we had an assignment due that required us to submit a working
replica of a system found in society; simple I know!

The problem arose when my project had reached its final phase, I
was the Japanese version and should have had no trouble with putting
the pieces of my model bridge together - a functional suspension-
bridge - turned out more tricky than I'd expected... the cars lined up on
either side waiting for the gate to open, allowing water traffic to pass
and visa versa. The boats weren't confined to lanes and took a
staggered approach, whereas cars would line up behind one another
trailing beyond the model.

I shared my design with our teacher before completing a model
version. He had encouraged me to stick with my idea no matter how
difficult it may seem. I'd successfully demonstrated that I listened intently in
class, engaging with the topics that were set; this was no issue, that was
one box filled. Upon hearing that my mainland counterpart would be
joining us though, I began to behave strangely.

The supervisor at the school entrance mentioned my tally to me -
you're a bit short this term, why don't you speak with your co-ordinator
before you leave today? I'd happily done so ~ my friend waited for me
after class.

“What did he tell you?” He asked.
“He said that I wasn't filling enough boxes, that they're sending my

mainland version to the school so I have to look after him.”
“Oh, I have not met a mainland counterpart before.”

We all gathered in the recreation room that evening. Some kids
were playing games, I was too exhausted from hearing that news so I
watched television. There wasn't much of interest on; advertisements for
retirement packages in serene locations in between teasers of the movie
that was showing this weekend. I eventually retired to my room as an
attempt at study - I had a lot of work left on my model, the bridge
wasn't yet lowering; vehicles waited patiently in both directions, boats
bobbing gently on the waters surface had right of way while the gate
was opened. I only had to let the cars through and it would be a
functioning suspension replica.

The next morning I arrived for class a little early as I was going to
meet my self from the mainland. He was waiting at the entrance ~
smiling as I walked in his direction.

“Good day, I'm from the mainland!”
“Morning, we should go inside. Class begins soon.”

37 Lainzine 4 – Sept 2016

Mainland
I had hardly a recollection of my home, it appeared so far away. The

school was wonderful ~ bright, wide hallways with lots of room for
students led to classrooms that filtered sunlight through great windows.
Today we were presenting our models so all the desks had been pushed
up against the walls with an island in the middle for whoever was
showing their work, dioramas and contraptions spread about the room
ready to be brought into the middle.

When it was time for showing the suspension bridge, we both went
up. I let my self do the talking - he was better with Japanese and had
done most the work, so I couldn't do more than offer my presence. He
demonstrated how the bridge would allow cars to cross from one side to
the other: once the boats were ready to pass through that section of the
river the gate would open, stopping all the traffic.

I looked toward the door and saw a clerk peering through a gap at
me. He had a somber expression as though a smile was not possible;
though much deeper down he wanted to express this sentiment, his
scrutiny would be undermined.

Watching the model again we were nearly done, some boxes were
left unchecked - I could see my friend was getting nervous. He lowered
the gate allowing the cars to drive from one side to the other once more.
The boats continued along the waterway...

We met for lunch near the eatery, my friend was not happy with his
performance.

“I just don't understand what they want from me.”
“Don't worry, I'm sure you'll do alright.”

Just as we were about to leave, a teacher could be seen from the
hall as if he was approaching us. Another clerk pulled him away
through the swinging doors, his outcry muffled as he disappeared
down the hall.

The next day we left the dormitory together. I had been experiencing
a continuous buzzing in my left ear while my friend seemed more
estranged than the day before. When we got to the school I couldn't
help but feel I was being watched; my friend took my hand and led me
away from class.

“We can't go in there!”
“What do you mean? We don't want to be late.”
“They're watching, they know who you are and they will come for me.

You have to follow me.”

He ran along the great hallway, pulling me behind him. I could hear
footsteps in the distance as we reached the entrance gate.

“Going somewhere?” The supervisor asked.

38Lainzine 4 – Sept 2016

We ran past the gate to a small opening in the building's exterior wall,
my friend began crawling through. I didn't look back though could hear
the clerks closing in on us - I followed him through a service shaft that
opened onto a rooftop. He was scrambling up a large vent; I ran after
him, finding my way to the top where he sat, gazing mindlessly at the
view - vast valleys stretched into the distance, it was like he hadn't been
outside before.

I sat beside him. A television set was attached to the surface of the
vent, pointed towards me. An image surfaced from the static ~ a clerk
spoke to me.

“You will remain where you are, don't move. We are coming to
get you, it is not safe out there!”

I kicked the monitor from the vent and it fell some distance before
crushing another clerk who was approaching.

“They are always watching us!” I screamed at my friend.

He nodded and gave me a smile.

39 Lainzine 4 – Sept 2016

40Lainzine 4 – May 2017

41 Lainzine 4 – May 2017

P r a c t i c a l L S A
E x t r a c t i o n a n d U s e :
A n I n D e p t h G u i d e
By InsomniaLost

Disclaimer
This article was written by for education purposes only, and I do not

explicitly condone or endorse any part of this document.

Introduction
Hello, my name is Czech and I am a Chemistry Enthusiast with

many, many years of experience both in academia and in the psychedelic
world. I too, love lain. Lysergic Acid Amide AKA. Ergine is an alkaloid
found in many plants, the list of which can be found below:

• Morning Glory
• Baby Hawaiian Woodrose Seeds
• Sleepy Grass
• Ololiúqui

Other plants I can not endorse due to potential for other compounds
being present. LSA has been used for hundreds of years and is said to have
first been discovered by Ancient Aztec agricultural scientists studying
potential sustenance crops. The history is not so much what I cover here, as
you could infer from the title, I am a chemist not a historian. It has low
potential for physical side effects (at least in pure form).

Medical Disclaimer
Don't do this if you have had adverse mental reactions to LSD, THC,

PSB or any other mind altering substance. Do not combine this with
substances other than but not limited to LSD, THC, PSB, DMT. As always
consult with your doctor to be sure LSA is right for you.

There are 2 problems you are liable to encounter from abuse of LSA;
High Blood Pressure and HPPD. High blood pressure is temporary and can
be solved with baby aspirin, HPPD is a beast of mental nature that will
never leave your eyes, nerves, and brain. It essentially permanently alters
nerve pathways in a completely screwy way, adding permanent static
into your field of view. Use at your own risk.

People suffering with depression have been shown to be positively
affected by microdoses of LSA over a long period of time.

Morning glory flower – Ipomoea nil.

Hawaiian Woodrose Seeds –

Argyreia nervosa.

42Lainzine 4 – May 2017

Acquiring LSA Containing Matter
This is incredibly easy to do and rather cheap. A quick google search

will bring you to any number of botany, gardening, or smart-shops. I
recommend highly purchasing Heavenly Blue Morning Glory seeds, from
an organic garden supply shop. Mail this to a P.O box, because from here
things get sketchy.

Legal ity
Having seeds in your possession is a legal can of worms. Never EVER

have this linked to you. Being caught with seeds is not a crime in and of
itself, but the D.A could argue intent to extract which would land you a
schedule III charge. Do not get caught. If you are caught with the extract
they could call “precursor to LSD” and you'd catch a murder charge.

Experience
There's no way to explain LSA to someone who's inexperienced with

psychedelics. It's like being at the top of the earth, ideas just flow like
water, everything has this beautiful glow, if you do enough and close your
eyes, fractal visions of ancient temples in outer space twist at speeds you
never dreamed possible. Everything is different on it.

For people who have experience with LSD, it's much less visual, more
euphoric but less 'power tool to the brain', and way, way easier to think
on.

Those with THC experience may find that it's a lot lighter on the
dome, so to speak, but vastly more visual.

I do not recommend it as the first psychedelic that you do.

Process
I am going to go through the process for extraction. This is a cookie

cutter template that will work for any source of LSA, and any amount of
LSA. LSA is extremely sensitive to light after grinding, do not expose to
U.V radiation, and preferably do this in a Red Room. I will hereby refer to
source matter as prelsa.

1. Grind prelsa in any electric coffee grinder. Do not grind too fast, any
amount of heat will decay some of the LSA. Use pulses of grinding until it
is a fine power.

Sleepy grass – Achnatherum robustum.

Ololiúqui – Turbina corymbosa.

43 Lainzine 4 – May 2017

2. Place very high purity (80% and above) grain alcohol into your
freezer. Set freezer temperature as low as possible. It will be extremely
cold. You may be tempted to drink it when you find it is not frozen, if
you do this your esophagus may freeze and shatter and you will die. The
colder the better but conventional freezer temperature should work fine.

3. Place ground prelsa matter into a coffee filter, and let it sit in a glass
of the extremely cold alcohol. Let it soak for several hours in the cold. You
may now remove and trash the prelsa matter within the filter.

4. Pour the solvent into a Pyrex Rectangular Storage Box. Evaporate in
a ventilated but cool area. You may do this under a stove hood with dry
ice sitting underneath the box to keep the LSA stable.

5. Scrape and Enjoy! You may mix with cold water and drink, mix
with everclear and drip onto sugar cubes, or sublingually consume the
residual LSA. The product left over should be 80-99% pure depending on
source matter.

Written, experienced, and distributed by 'czech'

Pre LSA

Post LSA

44Lainzine 4 – May 2017

45 Lainzine 4 – May 2017

P r i v a t e
By Tom Mil l icent

I was receiving calls from a private number - I had answered months
ago, the sound of a machine (perhaps a computer) could be heard;
whirring and clicks - but there was no response.

A dream spirit took my soul hostage - it gave me three options: you
leave now, I will destroy you; stay: I will devour your soul; give me your,
soul I will contact you.

I woke as my phone was ringing - it was a private number, I couldn't
wake up fast enough - again there was no message...

...These are SSTV test transmissions.

Some with and some without autoSlant...

These Images scattered across this spread.

Each is a part of the storry...

46Lainzine 4 – May 2017

...These are send and recived using a

Laser setup created to transmit audio...

...The intensity of a laserdiode gets

amplitude modulated by the output of a PC

soundcard...

...The beam hits a Photodiode on the next

building connected to an other PC reciving

and decoding the signal...

47 Lainzine 4 – May 2017

R e c o m m e n d e d R e a d i n g
By FORMAT

“The Art of UNIX Programming” by Eric Raymond is available here:
http://catb.org/~esr/writings/taoup/

“The UNIX-HATERS Handbook” by various writers is available here:
http://web.mit.edu/~simsong/www/ugh.pdf

Also see this:http://www.art.net/~hopkins/Don/unix-haters/login.html

This recommendation is different from the others, as it recommends
two works this time. The former, TAOUP, isn't being recommended for its
merit, but, instead, as a work to be glanced over and reviewed while
reading the latter, TUHH, which is the main subject this iteration.

The UNIX-HATERS mailing list is such a USENET list for rants
concerning UNIX and its various deficiencies. TUHH can largely be
considered a commentary on UNIX interspersed with many such rants. It
is well-written, flows nicely, and can be read in a matter of hours,
especially if the reader has already used UNIX.

This work is often dismissed as old and thus invalid, but perhaps the
strongest point is how many of the complaints are still valid today. Arcane
syntax and rituals, preventable failures, lack of fundamental features, an
unforgiving nature, and the emulation of hardware from the 1960s (and
more!) is still very much alive in the UNIX tradition as seen today. Much
of this is contrasted with other systems of the time that avoided most or
all of these issues.

The fourteen chapters detail:
• the birth of UNIX
• how it treats its newest users
• the documentation issues, when documentation exists
• mail frustrations
• the “joys” of using USENET
• the terminal and all of its quirks on top of quirks
• X-Windows or “This is not the ultimate window system, but I

believe it is a good starting point for experimentation.” [1]

• the “tools” UNIX provides for programming
• programming in the UNIX environment
• C++
• system administration as system babysitting
• a lack of security
• the unstable filesystems
• NFS

Looking at this list, some annoyances have largely disappeared, some
have only been exacerbated, and others have been abstracted under other
programs that usually work, but not always. A great deal of the fun is
finding exactly what these are. To its credit, the GNU project has
eliminated many implementation frustrations in UNIX life, but what wasn't
caused by implementation was caused by design, which GNU has been
less hostile towards.

“ Two of the most

famous products of

Berkeley are LSD and

Unix I don't think that

is a coincidence”

References

[1] http://www.talisman.org/xdebut.shtml

[2] Observe a concatenative language for an

example of easily passing output of one

procedure as input of another. The “pipe” is

nothing innovative.}, being UNIX or simply

heavyhanded implications of such. Many things

considered good are said to have been

http://catb.org/~esr/writings/taoup/
http://web.mit.edu/~simsong/www/ugh.pdf
http://www.art.net/~hopkins/Don/unix-haters/login.html

48Lainzine 4 – May 2017

TAOUP is recommended reading as an example of the “UNIX
weenie” archetype. The entire work should be read with a heavy
skepticism, as disadvantages and ills of UNIX are understated, ignored, or
played as positives while the advantages are grossly exaggerated. At
times, there are lies concerning the origin of concepts, such as “Open
Source Software” or the concept of the pipe. [2]

The two works share topics in parts and the difference in perspective is
interesting, to say the least. I recommend reading all of what the two
works have to say about sendmail. For good reason, TAOUP largely
sidesteps discussing actually programming in UNIX.

The twentieth chapter of TAOUP does explain some issues with UNIX
design, but often handwaves them away.

With regards to a UNIX file being an ordered collection of bytes:
“On the other hand, supporting file attributes raises awkward questions

about which file operations should preserve them. It's clear that a copy of
a named file to another name should copy the source file's attributes as
well as its data - but suppose we cat(1) the file, redirecting the output of
cat(1) to a new name?”

Vomiting a file is a very interesting operation, which usually requires
reset be used to fix the terminal or stty sane when reset fails, which
occurs often enough to require knowing this. The tradeoffs between
supporting file metadata and how this affects vomiting files is an ongoing
discussion to this very day.

If you find yourself skeptical of my recommendation, observe this [3]

FCNTL(2) Linux Programmer's Manual FCNTL(2)

… By default, both traditional (process-associated) and open file
description record locks are advisory. Advisory locks are not
enforced and are useful only between cooperating processes.
Both lock types can also be mandatory. Mandatory locks are
enforced for all processes. If a process tries to perform an incom?

…
BUGS
…

Mandatory locking
The Linux implementation of mandatory locking is subject to race
conditions which render it unreliable: a write(2) call that overlaps
with a lock may modify data after the mandatory lock is
acquired; a read(2) call that overlaps with a lock may detect
changes to data that were made only after a write lock was
acquired. Similar races exist between mandatory locks and
mmap(2). It is therefore inadvisable to rely on mandatory locking.}

“implicit” in the “UNIX tradition” and many

things considered bad are said to have been

part of the reason other systems have failed.

[3] {Issuing man fcntl on a GNU/Linux system

should display roughly this man page, prob

ably.}:

49 Lainzine 4 – May 2017

S e t T h e o r y
By popefucker

What is Infinity?
That’s a really hard question to answer.
If you ask people on the street, they’ll probably tell you it’s a number.

Many people use it that way; a lot of us remember telling our siblings
“Oh yeah? Well I have infinity plus one!” Luckily, our ape-brains tell us,
you’ll never need to comprehend infinity; it’s so vast that you’ll never see
all of it, no matter what you do.

Let’s assume infinity is a number. Let’s assume it is the biggest
number, such that all numbers are less than infinity, except infinity itself.
We can express that mathematically pretty easily (R here refers to the real
numbers, which is basically the same as ‘all numbers’):

statement 1: if n ∊ R, then n ≤ ∞

Let’s say another obvious thing: when you add two numbers together,
you get another number. This can be proved pretty easily by induction.

statement 2: if a,b ∊ R, then (a + b) ∊ R

And lastly, a blinding flash of the obvious. When you add a positive
number to something it gets bigger.

Statement 3: if a,b ∊ R and b > 0 then a + b > a

If you paid a lot of attention in math class, this part will be obvious.
Now we’ll say: if all of those are true, then what’s ∞ + 1? We know it
has to be real because of statement 2, so we know it has to be less than
or equal to infinity because of statement 1. But, we also know it has to be
greater than ∞ because of statement 3. Thus, we’ve found a
contradiction. Infinity cannot be a number, at least not in any number
system that follows the rules of the real numbers.

So what is infinity if it’s not a number? To answer that, you have to
start talking about sets.

Sets
Sets are pretty easy to understand, in their basic form. They’re just

groups of numbers. {1, 2, 3} is a set. And, as you can see, it as three
members: 1, 2, and 3. Easy.

They get a little harder when you start talking about infinite sets. Let’s
talk about the set of natural numbers, N. A natural number is one of two
things: 1, or the sum of 1 and another natural number. It’s clear that no
matter how many natural numbers you have, you can always make
another one by adding 1. So, we say that the set of natural numbers N is
infinite – that is, there is an infinite amount of things in the set. We call
the amount of things in a set its cardinality, and it’s important to note that
the cardinality of a set doesn’t need to be a number, only the set’s
elements themselves need to be.

This is an injection

This is not an injection

This is a bijection

50Lainzine 4 – May 2017

By definition, the set of natural numbers has a cardinality of Aleph-null,
which we use as a baseline. However, there are bigger infinities than
Aleph-null, which blows our entire concept of a single ∞ right out of the
water. How can one infinity(or infinite cardinality, more accurately) be
‘bigger’ than another?

The way we compare infinite cardinalities is by looking for something
called an injection. An injection (or injective function) is some sort of way
of mapping every member of one set onto exactly one member of another
set. If you can find an injection from an infinite set to the set of natural
numbers, then we say it is countable (don’t read into that word, it is just a
convention). A bijection is a special kind of injection that is an exact one-to-
one correspondance between two sets. If you can find a bijection between a
set and the natural numbers, then we say that that set also has a
cardinality of Aleph-null. It is very likely (but not known) that Aleph-null is
the smallest possible infinite cardinal.

A surprisingly large amount of known sets have cardinality Aleph-null,
and many of them have very tricky bijections (such as the proof that the
rationals are countable). However, one infinite set that does not have a
cardinality of Aleph-null is the set of all real numbers R, which we saw
when proving that infinity is not a number.

The Diagonal Argument

R (or “the continuum”) includes every number that does not have an
imaginary component. It includes every number that can be defined, and
many more that cannot. The proof that R has cardinality greater than
Aleph-null is very simple. Suppose you took an infinite set of real numbers,
and mapped them to the natural numbers, like so:

1.002029189877857… → 1
2.928984884893992… → 2
99349.02939191911… → 3
...

The actual numbers don’t matter, but they have to be non-terminating.
However, now that you have your infinite list, you can construct a new
non-terminating number by taking the n’th digit from the n’th element in
the list, and making the n’th digit of the new number different. Thus, the
new number will always have at least one different digit to every number
already in the list, and it cannot be in the list. Since the list was already
mapped perfectly to the natural numbers, the set of all real numbers
(which includes the new number) must be larger than the set of all natural
numbers, and thus must have a cardinality greather than Aleph-null. So,
some infinities are greater than others, and there are an infinite amount that
are greater still.

So, did we really figure out what infinity is? Well, no, not really, but we
found out it’s even more confusing than we thought. I guess sometimes
that’s the only victory you can claim.

51 Lainzine 4 – May 2017

52Lainzine 4 – May 2017

53 Lainzine 4 – May 2017

S i d e s t e p p i n g
W i f i T r i a l s
By Vixn

Introduction
You’re at the airport and need some Wi-Fi. Luckily for you the airport

provides you with some, but only for an X amount of time. When that
time runs out, you’re off the net.

You’re scanning for local Wi-Fi networks in your neighborhood and
you happen to live in a city where a company such as C0mc4st has
happily commandeered your favorite neighbor’s router to provide a
hotspot that you can use for a not-so-small fee. Luckily for you, after
poking around, you notice that they offer a one-hour free trial for their
services. After that hour, they kick you off.

Here’s a simple guide to sidestep that time limit. In essence this
tutorial can be given in one sentence, but I’ve opted to write it in such a
way that I hope is informative and encourages a certain kind of critical
thinking so that a newcomer might progress and come up with tricks like
this independently.*

The Trick
When you try reconnecting to a hotspot like the ones mentioned

above, the router of the hotspot provider rightfully identifies that your
computer has already taken advantage of their free trial. The first
question that we might ask is how such a hotspot can identify your
machine as the same one—even after a reboot, etc. The answer
(generally) is that your machine has thing called a MAC (Media Access
Control) address. This has nothing to do with Apple. Basically, a MAC
address is associated with your network card and allows a router to
identify you. It normally stays the same and consists of six groups of two
hexadecimal digits usually separated by colons (e.g., aa:bb:cc:dd:ee:ff).
This address can be changed (read: spoofed) pretty easily depending on
your system. When you spoof it, you temporarily give your machine a
new address thereby telling the hotspot that your computer is someone
else. And really, that’s all there is to it. Spoof your MAC address.

How to do it exactly depends on your operating system, and tutorials
are easy to come by. One thing to note is that not all MAC addresses
work if randomized improperly so don’t be discouraged if your first
attempt fails. The reason it doesn’t work is likely because the second digit
of the first grouping of your spoofed address (the second ‘a’ in the series
above) must contain only a 0, 2, 4, 6 or a, c, e.

* I in no way to claim to be 1337. And I understand that many of you likely know this little trick,

but I thought I’d share anyway. This is info that I wish I knew earlier as it has saved me quite a

bit of cash over the years.

54Lainzine 4 – May 2017

Further Tricks
The next steps you might consider are writing some scripts. One idea

you might want to try out is having your system randomize your MAC
so that the second digit in the first grouping takes the digit limitation into
account. Or you can randomize everything else, setting that second digit
permanently to one of the digits mentioned above— but if you take
advantage of hotspots daily it might leave a calling card you might not
want. Another idea would be to write a script that turns off your
network card, spoofs your MAC, and reconnects your machine for you.
This is a good idea because this process needs to be done anyway each
time you spoof your MAC and need to reconnect to the hotspot. You
may even want to add more on to the script to aid this process. For
instance, you might want it to auto-fill and randomize user info should
that might be requested during a free trial sign up.

The downside to all this is having to reconnect each time the trial timer
runs out, but it’s better than paying. Writing some code speeds things up.

Uses and Abuses
Obviously this trick can be taken advantage of in various ways.

Before going on let me just remind you that your data is flying through
the open air to some random person’s hotspot and you should take
some steps to protect yourself (e.g., utilizing a live OS, TOR, a VPN,
HTTPS, etc).

Without going into too much detail these hotspots can be used
creatively to your advantage in some of the following ways:

• Save money by not paying for Internet (if you live in an
C0mc4st xf1n1tyw1f1 infested city, for example).

• Save time by not running software to steal a Wi-Fi password.
• Further anonymity by having no active Internet services in

your name.
• Further privacy by avoiding high-density public spaces and

cameras (rather than utilizing, say, a coffee shop for certain
activities, find a quiet area with a hotspot) (note: high traffic
areas might also be used to your advantage).

• Fast and easy access to practically an unlimited source of
regions in your city for your Internet doings.

Hope this helps some of you and fills you with warm digitized feelings
of being a cyberpunk. If you ever want to talk you can find me on
#lainchan or Tox:

(4C373BB3FCB672F24E0E58B9F8A40C7EA6630F0166F37A56D9
5A1D133FB44C3C8D48304EA4AD)

55 Lainzine 4 – May 2017

T r i p R e p o r t
By Anonymous

Substance: 4-aco-dmt

Dosage: 20mg (approx)

Route of administration: Oral
This trip report is a description of my first experience with 4-Acetoxy-

DMT. This was my first experience with psychedelics in general. A
couple months before the events described here I had becomes very
interested in psychedelics. I had almost no experience with drugs of any
sort other than alcohol and opiates, so psychedelics struck me as being
very exotic and interesting. After visiting several forums as well as
Erowid, I learned about research chemicals. I was told that 4-aco-dmt
was an enjoyable substance; so I went ahead and purchased a small
amount. After this I continued reading advice/experiences on the internet
and started to make some preparations.

I collected music that I liked and arranged it into a playlist that I
could listen to during the comeup and the trip itself. I also went around
collecting some “trippy” images that I thought I might enjoy looking at
and some videos that I thought would be cool (Specifically the TV
show “Off the Air.”) To be honest, I was very nervous about my first
trip. I decided that I would go for a walk along the beach near my
house during the trip. I didn’t have anyone who could trip sit for me,
and I wasn’t entirely sure exactly how lucid I would be while I was
tripping. Still, I was set on doing it anyway. In retrospect this wasn't
exactly brilliant. Walking around in public while tripping is fun, but very
risky. Live and learn I suppose.

Now for the trip itself.
It was a Friday night, and the weather was very pleasant (I had

settled on night time because I was worried about going outside during
the day while tripping.) I sat down at my computer desk and took out
the 100mg baggie I had acquired. At the time I did not have a scale
capable of measuring milligrams, so I did my best to divide the powder
into five even lines for a 20mg dosage (This was another rookie mistake. I
would not suggest eyeballing dosages.) I scraped the drug into a small and
thin slice of cheese, balled it up, and then swallowed it whole as if it were
a pill. I was extremely nervous, my hands were shaking and my heart
was racing. I turned on the playlist I had arranged and sat back breathing
deeply to calm myself down.

My stomach was empty, so I started to really feel effects after about
twenty minutes. I was hit by a wave of euphoria and began laughing for
no particular reason. All the anxiety I had previously felt was gone, and I
just felt wonderful. I looked around my room and saw that the white door
to my closet was now tinted a greenish color (the same color as the
blanket on my bed), which I found very funny. After some time I began
to notice slight tracers from my hands moving, and decided it was time to

56Lainzine 4 – May 2017

go out. I got up, went to the door, and opened it, which made me feel
somewhat proud of myself for properly operating a doorknob. I walked
down the stairs and stopped to pat my dog, all of which made me feel
very good about everything in general. I was feeling very happy and
content, like all was right with the world.

I opened the front door and immediately noticed that everything was
very bright, despite the fact that it was around 9:30pm. Street lights
seemed much brighter than normal, and the glow of the lights over the
city were also very bright. The sky was beautiful. I went to the beach and
stood on the sand marveling at the ocean and the sky. It seemed like
every time I looked back at the sky the clouds and the glow from the city
lights had changed color. The stars in the sky seemed to be moving
around and I was amazed at how...large the sky as a whole was. I was
laughing uncontrollably, and I was aware that there was a young couple
sitting on the beach wall about 30 yards away. I didn’t really care at the
time, even though I felt like they were watching me (they probably
were). I heard the girl laugh, which made me laugh even harder. At the
time I believed she was laughing for a very long time, and the sound was
very loud, as if she was standing right next to me. The sound seemed to
echo inside of my head for some time. I estimate that I stayed where I
was for about 45 minutes. My perception of time was pretty warped, and
it felt like a much shorter period of time.

I suddenly decided that I wanted to run. There’s a spot on the beach
where the beach and the street diverge so street level is much higher up,
so the beach wall is about ten feet tall.

I would say that I was probably about 150 yards away from there
at the time. I started running as fast as I could towards that area, and I
felt amazing. I felt like I was moving at an incredibly high speed. The
beach seemed to stretch on forever in front of me, and I started to
wonder how long it was going to take me to reach the end. Suddenly I
looked to my left and saw a man walking along the street by the
concrete beach wall. This startled me for some reason, and I realized
that I was acting very strangely. I slowed down and tried to pretend
that I was just jogging or something. At this point I was right at the
area I had been trying to reach, so I went to the base of the high wall.
While I was walking over to some of the large rocks at the base of the
wall, I spotted a piece of driftwood. I said out loud “Is that a cat?” and
went over to investigate it. I had previously been thinking about animals
(specifically my dog) and I had wanted to touch a cat as well. I was
interested in tactile sensations in general. Despite sprinting 150~ yards I
didn’t really feel worn out, but I was breathing heavily, which is
interesting to note because I don't exercise frequently.

I went over to some large rocks that are right up against the base of
the wall and began touching the concrete to see what it felt like. I really
enjoyed the rough feeling of it, so I spent several minutes just running my
hands along the wall. Eventually I stopped and decided to sit down. I sat
there staring at the ground for a while and touching the rock I was sitting
on. For some reason I got a slightly paranoid sense that someone was
watching me, so I kept twisting around to look at the top of the wall to

57 Lainzine 4 – May 2017

see if someone was looking down at me from the street. I sat there for a
while admiring the ocean and sky some more. I tried to close my eyes to
rest for a bit, but my memory of the scenery around me was so vivid that
it was almost like I was still seeing everything even with my eyes shut. I
reached up to touch my face and verify that my eyes were really closed,
and they were.

I sat on the rocks thinking about my life and the people I knew for some
time (I was also talking to myself the whole time, but that’s not unusual for
me). I reflected on my personal relationships, and felt that I knew a lot of
very good people, and that maybe I didn’t appreciate them as much as I
should. My thoughts moved to a coworker who had recently quit. Despite
the fact that I didn’t know him very well, thinking about this made me very
upset. I almost cried when I realized I would probably never see them
again. My thoughts took a more depressing turn from there, and I realized I
needed to steer myself away from that sort of thing.

After steering my mind away, I started to think about the people
online who had given me advice. I started thinking about how I needed to
thank them for everything they told me. I got up and started walking to
an area where the wall gets a bit lower again, and looked over it while
standing on my toes. I believe I saw a black and white cat standing on the
wall, but now that I think about it I wonder if it's possible that I merley
imagined it. I was very excited to see it, because I wanted to touch it and
say hello. I tried calling out to it, but it just stayed where it was and
looked at me. I then attempted to climb over a lower (5ft~) part of the
wall, which should have been a pretty easy task. My coordination seemed
to go out of the window though, because I ended up just sort of bumping
into the wall instead of hoisting myself onto it. The cat then began to walk
away, and I decided to go around the high area and back onto the street.
Despite this, I suddenly noticed a clam shell on the ground and picked it
up. I stood there examining it for a moment before I remembered what I
had been doing.

By the time I got to where I had seen the cat, it was long gone (if it
was ever actually there in the first place). I stayed standing on the sidewalk
leaning against the wall, and I began to admire some trees on the other side
on the street in someone’s yard. Their beauty was breathtaking, and while I
was standing there staring at the trees they seemed to fill my entire vision,
almost as if my eyes were a camera zooming in on them. I was seeing an
illusion of faces in the leaves of the trees, and I remembered seeing a
painting showing something similar. I was amazed by this and kept
repeating to myself "It's just like the painting!"

While I was standing there I noticed that someone was approaching
me on the left. I believe it was a man wearing a hooded sweatshirt, but

58Lainzine 4 – May 2017

when I looked up, he suddenly turned around and began walking in the
opposite direction very quickly. I had the sudden urge to go talk to him
and at the same time I wondered “Where is he going?” and I was
concerned that I had somehow scared him. At this point I realized that I
had been standing on the sidewalk for quite some time with my mouth
hanging open (I had actually drooled on myself a bit.) I then started to
get paranoid about being arrested and decided I should walk home.
When the idea of being arrested/confronted by the police crossed my
mind, I started to get very annoyed at the notion of someone trying to
arrest me for harmless fun. I quickly put this out of my mind because it
was bothering me.

I started walking along the sidewalk to head home. I was making a
conscious effort to act normal, because I felt like people were watching
me. Still, while I was walking I noticed tracers out of the corner of my
vision from my hands swinging at my sides. I began waving my hands
around in front of my face to get a better look at them while walking. I
realized that looked very odd, so I stopped. I continued to touch bushes,
other plants, and grass on my way back though, just to see how they felt.
Everything (especially plants and grass) had this wonderful color
enhancement. Colors seemed supersaturated and had a sort of fuzzy
colorful glow to them. This glow was not necessarily the same color as the
thing I was looking at.

Right as I was arriving home, I saw my neighbor stepping out of
his car. This freaked me out, because I didn’t want him to know that I
was on drugs. I started thinking to myself about what to say and how
to act. This was pretty successful as far as I can tell, because I passed
him and he said “Oh hey, what’re you up to?” and I just said that I
was out for a walk and told him to have a nice night. He said bye,
and then kept walking. I felt very proud of myself for not panicking
and immediately went inside.

After this, I went back to my room and looked at some more pictures,
listened to music, and watched some of the shows/videos I had prepared
earlier. All of which were very interesting and enjoyable. In total I would
say the real trip only lasted about 3-3.5 hours, but I was still feeling a mild
headspace for some time after that. It's hard to describe, but it was a sort
of lightheaded and "funny" feeling in my skull.

Overall, the trip was amazing. Although I did feel paranoid or upset
at times I would not say that these portions of the trip subtracted from the
overall experience in any significant way.

I felt great for the next couple of weeks. I had plenty of energy and I
was in a very good mood. I often found myself laughing at the absurdity
of being, or just admiring the clouds in the sky.

59 Lainzine 4 – May 2017

U p g r a d i n g P h y s i c a l
S e c u r i t y W i t h o u t
S p e n d i n g a C e n t
By Ni ls Iwakura

Physical Security
You may have good security on the Wired, but that wont help you when

someone breaks into your base of operations and steals/breaks your setup.
This is how to modify your locks to better resist lockpicking, without

having to replace your keys.

Tools you will need are:

• A dremel/high speed rotary tool with collet for the diameter of
the pins (Fig.1)

• Something to hold the dremel in place (I used a vice, you can
clamp it to a table, just get it stable)

• A pin tray (I made mine out of cardstock that I accordian folded
to give me ridges in which to distinctify which set the pins were
from (Fig.2))

• Screwdriver or other tool to take out retainer. (Fig.3)
• Tweezers (Fig.3)
• Mini Files. I only used the edge of my thinnest flat file, and the

corners of the triangle file. (Fig.3)

Your lock MUST have a removable core. Most doorlocks and high end
padlocks should have this. To get to the core, you must take the lock out
and get to the back of the cylinder. Different locks have different retaining
methods, but the example I used has two screws in the back that you
must remove (Fig.4) (another common method is a C-retainer). Remove
the retainer, insert your key and turn. It should be able to come out the
front, but be CAREFUL, the driver pins will be under spring tension and
will jump out and you may lose them, or lose where it was (my example
has uniform driver pins, some dont).

At this point you should make/have a pin tray. If you mess up the
order, the original key will not work and youll have to try to guess which
pins go where based on the key.

Hold or vice up the lock so that the springs and driver pins are coming
out upward, turning the key so the key pins are also trying to exit
upward (for mine I just turned the lock upside down, and turned the key
to be the right way up). Use your finger to cover the back of the hole as
you slowly pull out the key with the cylinder. Once you hear the click of
the driver pin jumping out of its place, take it out and put it in the tray
(this pin should be the very back pin, so it goes in the highest pin number.

FIG 1) A dremel/high speed rotary tool.

FIG 2) A pin tray.

FIG 3) Screwdriver or other tool to

take out retainer

60Lainzine 4 – May 2017

Mine is 5 pin so I would put it in the 5th position in the pin tray). Repeat,
putting pins in their proper place in the pin tray until theres no pins left
(Fig.2). Fully remove the keyway, careful to keep it upright as to not lose
the key pins. Carefully remove the key and put the key pins in their
respective spot in the pin tray (Fig.2). You may optionally flip the lock
body upside down to dump all the springs out, but if its in a vice you
dont need to worry about it, as long as you dont tip it over and end up
losing a spring. If your pins already have spool, serration, or other security
features, then you/your landlord/previous tennants chose a decent lock.
You can still cut whatever standard pins are in that lock, but leave the
already cut ones alone.

Now comes the fun part. Take a pin and tighten it up in the dremel,
trying to leave as much exposed as you can while still having a good hold
(if the pin in a key pin, put the side with the 45 degree end into the
collet, and cut the other end) (Fig.5). Set the speed to low if you can,
turn it on and let it rev up. Now you start cutting into the pin with the
files, careful not to touch the ends of the pin (if you do, youd need to
rekey). Aim to cut serrations or spool shapes into the pin (Fig.6). This will
make it harder to pick by giving false sets. Repeat this process with as
many pins as you like (I did it with all of them to get some practice in).

Once you've finished cutting your new security pins, you can start
putting everything back together. Start by putting the springs back into
the lock body if you took them out. Put all the key pins back into their
correct places in the keyway, making sure the right side is down (45
degree end goes in first). Then take your tweezers, putting the driver pin
in place before pushing it down and sliding the keyway over it to stop it
springing out again (make sure you don't dump your pins by turning it
upside down). Its best to put the driver pins in non-cut side first, as they'll
false set more often. Continue putting pins in and sliding the keyway until
all pins are in. Push the keyway all the way in before turning to lock it.
Put the retainer back and test it with the key. If it opens, you're done! Put
it back where it belongs and enjoy your more secure lock (or take it with
you to DEFCON and try to frustrate the lockpick village).

If you've got questions or just think I'm a cool guy and you wanna talk
to me, send something over to nils@tfwno.gf

I am not responsible if you go fuck up your lock or if you get hurt
doing this. Some of my lock terminology might be incorrect, so forgive me,
I'm not a professional.

FIG 4) Remove the retainer

FIG 5) Put a pin in the dremel, trying to

leave as much exposed as you can.

FIG 6) Aim to cut serrations or spool shapes

into the pin.

61 Lainzine 4 – May 2017

W e b s c r a p e r s , a g u i d e
a n d a h o r r o r s t o r y
By raxmur

A classic website can be thought of as a program that takes a set of
information from its server, assembles it as needed and sends it back the
browser. A good API (Application Programming Interface) is one of the
most useful features a website could possibly have, because it exposes the
raw information instead of wrapping it in its own UI, so that you get to
decide how to assemble it and what to make of it.

Some websites unfortunately lack this great feature, perhaps because
of developer laziness, incompetence or simply lack of interest. This is where
the scraper comes in.

A scraper is like an API that you have to write yourself: it disassembles
the webpages, extrapolates the required information and collects it into a
data structure that you can work with. Scrapers might not be as powerful
or as clean as normal APIs, but they're often the only way to get access to
information programmatically.

Tools of the trade
To write a scraper, you're gonna need a few things:

• Knowledge of a programming language. I choose **Ruby**
because it's concise, has a REPL, and great libraries, but you can

choose any language you see fit.
• A web browser with developer tools. All major browsers have

these, so just pick your poison.
• curl. This is an invaluable tool for whoever works with the internet.
• A library to make http requests. I use Net:HTTP because, well, it

ships with Ruby.
• A good library to access XML, possibly through XPath. This is

gonna be the deal breaker for the language you're gonna use,
because XML is a mess and you *will* have to deal with
malformed XML. **Oga** is what I used. (Some use regular
expressions to parse XML. I do not recommend it.)

• Some Javascript knowledge. Single-page websites often use their
own internal REST API to fetch the information, so you may
have to read through some frontend code.

A simple example
Writing a scraper is made up of two phases: first, you'll need to

understand how the website works and where to poke to obtain the
information you want, then, you'll have to parse the resulting webpage
and select the interesting bits.

62Lainzine 4 – May 2017

Let's take lainchan as an example: let's ignore that it has a perfectly
good JSON API and say you want to write something that consumes the
posts in a thread.

First of all, pay attention to the URLs. Websites are programs after all,
so they (should) work in a logic way: try to find patterns by looking at
the URL and the function of the page you're on.

Let's take lainchan, for example. In lainchan's case, this is very simple:
the first element in the path is the board ID (Î», cyb, lit or what have
you). Then, in the index pages, the second is the page number, while in a
thread it's just a prefix, and the third is the ID of the thread.

You can write some functions to generate the correct URLs, if you want:

```
BASE = 'https://lainchan.org/'
def index(board, page)

"#{BASE}#{board}/#{page == 1 ? "index" : page}.html"
end
def thread(board, id)

"#{BASE}#{board}/res/#{id}.html"
end
```

Now that we got the logic down, we can begin the second phase.
Locate the elements you want to scrape and right click on them. There
should be an option called "Inspect Element", or something similar. This will
open the Web Inspector and select the line in the HTML with the element
you selected. Try to find a pattern in the elements' classes or structure.

Let's take lainchan again. Let's say we only want to get the opening
post bodies for each index page. All OPs have class `op` and the body is
inside a div with class `body`. Let's translate that into code.

```
%w[uri net/http oga].each { |l| require l }
doc = Oga.parse_xml(Net::HTTP.get(URI(index 'cyb', 1)))
ops = doc.css('.op')
op_bodies = ops.map { |post| post.css('.body').text }
```

With just a few lines of code, we were able to easily get access to the
information we needed. Wasn't that easy?

63 Lainzine 4 – May 2017

A tale of bad code
Unfortunately for you, not all websites are as easy to scrape as

lainchan. Sometimes you come across a huge tangled mess that might
take you hours to unravel. Let me tell you a story about how not to write
a single-page website.

dojin.co is a website that gathers download links to doujin music:
Japanese indie music often inspired by videogames such as the Touhou
series or Kancolle. It is amazingly heavy, for some reason; it is not rare for
my browser tab to crash while I'm trying to search for something. One
day I got tired of its bullshit and decided to write a scraper for it, and try
to understand what was the cause of its abysmal performance.

Little did I know of the horrors lurking underneath.
My first guess was that the developer just did what everybody loves

doing these days: throw a bunch of crudely combined JavaScript
frameworks at it and call it a day. That's understandable: the site appears
to have only one developer, and he seems to enjoy web design more than
programming. But as I open up the dev tools, I am greeted by a relatively
short list of unorderly files with surprisingly little trace of framework-like
drivel. Guess the code really is that bad.

The codebase is kind of a mess, but it doesn't take me long to find the
function called when scrolling down to load more albums. It makes a
POST request to an ‘ajaxurl’ with some settings and an ‘arraySet’, which
seems to indicate what to send.

‘ajaxurl’ turns out to be ‘/wp-admin/admin-ajax.php’. This tells me
that it's using wordpress underneath, and that the server side of the
website is likely to be a huge mess of PHP. I open up a terminal and try
curling the address:

```
$ curl -X POST http://dojin.co/wp-admin/admin-ajax.php
0
```

There doesn't seem to be anything stopping me from doing it. Does
this mean that the authentication is useless? Most likely. Let's try curling
with the parameters from ‘displayMore()’:

```
$ curl -X POST http://dojin.co/wp-admin/admin-

ajax.php?action=infiniteScrollingAction&postPerPage=35&offset=0&arrayS
et=%5B34959%2C22539%2C16137%2C23916%2C34978%2C34982%2C3
4517%2C37926%2C1797%2C2453%2C2586%2C1462%2C11373%2C23913
%2C34984%2C5716%2C6372%2C7708%2C23910%2C2188%2C3441%2C1
7564%2C34980%2C37277%2C9111%5D

```

This returns a JSON file with the results in plain (malformed) HTML
under the “data” key. Why you would wrap that in a JSON object is
beyond my comprehension, but hey, it works for him. After playing a bit
with these parameters I figure out that the numbers in “arraySet” are just
album IDs. This is also a weird decision, but it sort of makes sense.

Later on, I find what seems to be the POST request invoked when
searching: the payload is a hashmap containing some options and the
search terms; the “artist” and “style” fields are represented by IDs. curling
with those parameters returns the search results and an array with the
album IDs. Bingo! Now all that's left is figuring out where it's getting the
artist and genre IDs from.

64Lainzine 4 – May 2017

I search the whole codebase for other AJAX requests, but nothing
turns up. I try to run the profiler while searching and, while it does register
an incredibly high call stack and a huge performance hit at various points,
it surprisingly shows no signs of hitting the network. Baffled, I try using
"Inspect Element" on one of the search suggestions, which is when the
realization hits me like a bus.

THEY WERE THERE ALL ALONG! All the artist and style IDs
where all hidden in plain sight in the page HTML.

It takes me a while to recover from such a sight. I start writing the
scraper, but the front page is so huge that nokogiri, the XML library I
was using before, chokes on it, and I'm forced to switch to Oga. After
fighting with XPath and encodings, I finally get a JSON file with all the
artists and their respective IDs. It is 84KB; given the verbosity of XML I
estimate the source to be at least 700KB, and I'm not far from the truth:
the whole front page weighs a little short of 1MB.

But why exactly is it so slow? Well, first of all, 1MB of HTML is a lot
to digest for a borderline toaster such as mine.

Second, this 1MB document is being queried all the time. How do you
suppose it shows the suggestions? Obviously it queries the whole thing for
the elements with a name attribute that starts with the search term and
changes their properties to make it so they appear in the suggestion list.
Querying such a huge document takes time, especially since it has to run
synchronously and thus hangs the page until it's done. Now imagine this
running each time you push a button on your keyboard.

Despite this madness, the scraper turned out to be pretty simple to
write: I made it generate a nice HTML file with the results. It looks a lot
like the website itself, but without all the crap.

And this, my friends, is the reason why a good API is the best feature
of a website: it provides a standard interface that gives you the freedom
to access its information the way you want to, unconstrained by the
idiosyncrasies and failings of its UI.

65 Lainzine 4 – May 2017

