

LAINZINE VOL. 5

HACKING
JAVA-WEBAPPS

FOR
DUMMKOPFS

#####

#####
#####

#
#
#

Hacking Java-Webapps for Dummkopfs
While PHP dominates the web development
ecosystem, many competitors such as NodeJS,
Ruby and Python have risen against it. One of
the oldest competitors is Java, an enterprise
grade Object-Oriented Programming (OOP)
language, which can be run in many environ-
ments. Because of its platform-independent
model and enterprise grade programming, it
is used in many corporations and state-driven
projects as the language of choice.

If you want to perform a run on Arasaka Inc.
or any other megacorp, you need to know how
to hack Java webapps.

Java Webapps for Non-Java People
Much like JAR files, Java webapps are con-
tained in WAR files which contain all of the
Java object code, static images, css, JSP pages
and servlets. These WAR files can then be de-
ployed on Java application servers, such as the
popular Apache Tomcat or WildFly (previously
known as JBoss). The application server han-
dles the bootstrapping and parsing requests
and forwards them to the code contained in
the WAR archive.

What’s inside a WAR?
In a nutshell, a WAR archive can be free form,
and there isn’t a one standard place for differ-
ent files. However, things that are usually in
the WAR file are the directories WEB-INF and
META-INF. These contain configuration files
the application server, such as Tomcat, uses to
parse the archive and map the handlers.

HACKING JAVA WEBAPPS FOR DUMMKOPFS

#####
#####

Example of a simple WAR file:

.war/
WEB-INF/
... web.xml
... struts-config.xml
... classes/
... lib/
META-INF/
... context.xml

The WEB-INF can also contain precompiled
classes (.class files) in a directory named
“classes” and third-party libraries in the direc-
tory called “lib”. The most central file in the
WEB-INF directory is the file called “web.xml”.
This configuration file contains basic infor-
mation about the different settings, filters and
servlets contained in the archive.

The other important configuration file in WEB-
INF is the struts-config.xml file which contains
mappings of different requests (for example /
hello) to different handlers (or servlets, such
as com.company.application.class). It also has
configuration to different login handlers, redi-
rects and JavaBeans (more on that later).

The META-INF directory may or may not exist
in the WAR file. This directory usually con-
tains a file called “context.xml” that is used to
configure application wide settings, such as
database connections, which can be used by
any servlet as a data source. This information
can also reside in the application servers con-
fig directory, making the configuration options
server-wide and not just application-wide.

Static data, such as images and css, can pretty
much exist anywhere in the archive.

Servlets, JSPs? Beans?
Webapps written in Java usually try to emulate
an object-oriented approach to web develop-
ment. While there are .jsp files, which can be
thought of like your basic .php files, mixing

HACKING
JAVA-WEBAPPS
FOR DUMMKOPFS

HACKING
JAVA-WEBAPPS
FOR DUMMKOPFS

index -> com.company.app.showIndex

showNews.do -> com.company.app.getNews

postNews.do -> com.company.app.postNews

LAINZINE VOL. 5

HACKING JAVA WEBAPPS FOR DUMMKOPFS

normal HTML with dynamic Java code, the salt
of the application is servlets. Servlets are like
normal Java classes, except that they take in
HTTP requests and spit out HTTP responses.
Usually they go even deeper and try to distin-
guish servlets which output HTML pages with
the servlets that perform actions, such as data-
base queries, with the virtual file extension of
“.do”. You can think of the .do files as getters
and setters, if you know your Object-Oriented
Programming.

Example mapping of servlets:

While the JSP pages are like php, mixing
HTML with the actual serverside code, serv-
lets usually use a library called JavaBeans.
JavaBeans is a simple way to render and con-
struct HTML code serverside, by telling it what
you need, whether it is an HTML form or a
static image.

So how do we hack it?

Application server
A lot of information already exists of this, but
I’ll tell you the answer:

You need to brute-force the login, then upload

admin:admin

admin:tomcat

tomcat:tomcat

your malicious backdoor WAR application.
There is no silver bullet for this and you need
to refer to the documentation of your appli-
cation server. For example, the Tomcat admin
runs usually on port 8080, where you can try
user/pass combinations such as:

And so on an so forth. Metasploit has modules
for all of this.

Servlets
The most common (and destructive) Java we-
bapp bugs in order are:
1. Access control
2. Local file/resource disclosure
3. SQL injection

SQL injection is a bug that I won’t be talking
about in this article, as it is a common flaw and
can be exploited in the same way as in PHP.

Access control, or how I logged in as an
admin
While Java has its ways (JSESSID) to control
logging in an out of an system, it’s up to the
developer to keep track of which parts of the
webapp an user can and cannot enter. This
can be either done in the servlets or as a filter
which is applied in web.xml/struts-config.xml.
Either way, you can never be too sure that the

#####
#####

####
####

adminDashboard
adminDashboard.jsp
adminDashboard.do
userAdd
userAdd.jsp
userAdd.do

showPage.do?page=asd.jsp

image.jsp?image=123.png

userRegister?step=sendEmail.do

LAINZINE VOL. 5

HACKING JAVA WEBAPPS FOR DUMMKOPFS

developer didn’t leave something out.
For example, if we see that the page:
/adminPanel
Is password protected, we should check and
see if pages associated with it are. If you have
the config files (more on that later), you can go
and check every page for access control vul-
nerabilities. If not, you can generate a huge
word list of blind tests, such as:

And so on and so forth, and check if you can
find anything interesting. One of the common
mistakes developers make in this object-orient-
ed ecosystem is having access control in your
basic servlets, but not your getters/setters (the
.do mappings). If not, you can also test the
found servlets for other vulnerabilities.

Local file/resource disclosure
This is a classic mistake, but in Java, it’s so
easy to make, especially on the resource side.
If you see servlets like this:

You are bound to find one of these vulnerabil-
ities. The difference between resource and file
disclosure is that in a file disclosure, the code
is using a filestream to open the file, meaning
you can read any file there is, such as /etc/
passwd. In a resource disclosure, the servlet is
opening a resource inside of the WAR archive,
and you are limited to browsing inside the ar-
chive.

Try to use backhops like “../” and see what you
find. Fimap may also work.

File Disclosure
File disclosure is bad, real bad, if you know
how to use it. In order to exploit it, you need
to know the operating system/distribution the
Java application is running on, because even in
linux distributions, the system files may be kept
in different directories.

Try to:
1. Get system information: hostname, network
configuration, anything in /proc/, bashrc...
2. Configuration files, sshd, apache, ftpd...
3. Password/gpg files, can be found using the
configuration files
4. Log files, everything in /var/log/

You can find a lot of juicy information which
will surely help you break into the megacorpo-
ration.

Resource disclosure
This one is a bit trickier, as you are limited to
working in the current WAR file. Nevertheless,
you can still find juicy information.

Try to:
1. Get the configuration files WEB-INF/web.
xml, WEB-INF/struts-config.xml
2. Possible database passwords in META-INF/
context.xml
3. Static files, if you can find them

These files contain information on how the we-
bapp works from within and can contain useful
information, such as FTP/database informa-
tion, user accounts, test/debug servlets, logs
and the like.

More information

Apache Tomcat documentation:

https://tomcat.apache.org/tomcat-7.0-doc/

OWASP: https://www.owasp.org/index.php/

Category:Java

Metasploit: https://www.metasploit.com/

Fimap: http://www.fimap.com/

Google: https://startpage.com/

